On birational involutions of~$\mathbb P^3$
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 627-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study elements $\tau$ of order two in the birational automorphism groups of rationally connected three-dimensional algebraic varieties such that there exists a non-uniruled divisorial component of the $\tau$-fixed point locus. Using the equivariant minimal model program, we give a rough classification of such elements.
Keywords: rational map, Cremona group, Fano variety.
@article{IM2_2013_77_3_a10,
     author = {Yu. G. Prokhorov},
     title = {On birational involutions of~$\mathbb P^3$},
     journal = {Izvestiya. Mathematics },
     pages = {627--648},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On birational involutions of~$\mathbb P^3$
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 627
EP  - 648
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/
LA  - en
ID  - IM2_2013_77_3_a10
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On birational involutions of~$\mathbb P^3$
%J Izvestiya. Mathematics 
%D 2013
%P 627-648
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/
%G en
%F IM2_2013_77_3_a10
Yu. G. Prokhorov. On birational involutions of~$\mathbb P^3$. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 627-648. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/

[1] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry. In honor of Yu. I. Manin on the occasion of his 70th birthday, vol. I, Progr. Math., 269, Birkhäuser, Boston, MA, 2009, 443–548 | DOI | MR | Zbl

[2] Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank 3”, Classification of algebraic varieties (Schiermonnikoog, Netherlands, 2009), EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 327–338 | MR | Zbl

[3] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank 3”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl

[4] L. Bayle, A. Beauville, “Birational involutions of $\mathbf P^2$”, Asian J. Math., 4:1 (2000), 11–17 | MR | Zbl

[5] A. Beauville, “Variétés de Prym et jacobiennes intermédiaires”, Ann. Sci. École Norm. Sup. (4), 10:3 (1977), 309–391 | MR | Zbl

[6] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 815–868 | DOI | MR | Zbl | Zbl

[7] C. Birkar, P. Cascini, Ch. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468 | DOI | MR | Zbl

[8] J. Kollár, Sh. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[9] Y. Miyaoka, Sh. Mori, “A numerical criterion for uniruledness”, Ann. of Math. (2), 124:1 (1986), 65–69 | DOI | MR | Zbl

[10] V. Alexeev, “General elephants of $\mathbf Q$-Fano 3-folds”, Compositio Math., 91:1 (1994), 91–116 | MR | Zbl

[11] V. A. Iskovskikh, “Anticanonical models of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 745–814 | DOI | MR | Zbl | Zbl

[12] V. A. Iskovskikh, Yu. Prokhorov, Fano varieties. Algebraic geometry. V, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999 | MR | Zbl

[13] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 | DOI | MR | Zbl

[14] V. V. Przhiyalkovskij, I. A. Chel'tsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421 | DOI | DOI | MR | Zbl

[15] T. Fujita, “On the structure of polarized manifolds with total deficiency one. I”, J. Math. Soc. Japan, 32:4 (1980), 709–725 ; “II”, 33:3 (1981), 415–434 ; “III”, 36:1 (1984), 75–89 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[16] Ch. D. Hacon, J. McKernan, “On Shokurov's rational connectedness conjecture”, Duke Math. J., 138:1 (2007), 119–136 | DOI | MR | Zbl

[17] H. Yoshihara, “Degree of irrationality of an algebraic surface”, J. Algebra, 167:3 (1994), 634–640 | DOI | MR | Zbl

[18] C. H. Clemens, P. A. Griffiths, “The intermedite Jacobian of the cubic threefold”, Ann. of Math. (2), 95 (1972), 281–356 | DOI | MR | Zbl

[19] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13 (2013)

[20] B. Saint-Donat, “Projective models of K-3 surfaces”, Amer. J. Math., 96 (1974), 602–639 | DOI | MR | Zbl

[21] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl

[22] A. Corti, A. Pukhlikov, M. Reid, “Fano 3-fold hypersurfaces”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 175–258 | MR | Zbl

[23] I. Cheltsov, J. Park, “Sextic double solids”, Cohomological and geometric approaches to rationality problems, Progr. Math., 282, Birkhäuser, Boston, MA, 2010, 75–132 | MR | Zbl

[24] S. Endraß, “On the divisor class group of double solids”, Manuscripta Math., 99:3 (1999), 341–358 | DOI | MR | Zbl

[25] J. Kollár (ed.), “Flips and abundance for algebraic threefolds”, A summer seminar at the University of Utah (Salt Lake City, 1991), Astérisque, 211, Soc. Math. de France, Paris, 1992, 1–258 | MR | Zbl

[26] Yu. Prokhorov, “$\mathbf Q$-Fano threefolds of large Fano index. I”, Doc. Math., 15 (2010), 843–872 | MR | Zbl