On birational involutions of~$\mathbb P^3$
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 627-648

Voir la notice de l'article provenant de la source Math-Net.Ru

We study elements $\tau$ of order two in the birational automorphism groups of rationally connected three-dimensional algebraic varieties such that there exists a non-uniruled divisorial component of the $\tau$-fixed point locus. Using the equivariant minimal model program, we give a rough classification of such elements.
Keywords: rational map, Cremona group, Fano variety.
@article{IM2_2013_77_3_a10,
     author = {Yu. G. Prokhorov},
     title = {On birational involutions of~$\mathbb P^3$},
     journal = {Izvestiya. Mathematics },
     pages = {627--648},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On birational involutions of~$\mathbb P^3$
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 627
EP  - 648
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/
LA  - en
ID  - IM2_2013_77_3_a10
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On birational involutions of~$\mathbb P^3$
%J Izvestiya. Mathematics 
%D 2013
%P 627-648
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/
%G en
%F IM2_2013_77_3_a10
Yu. G. Prokhorov. On birational involutions of~$\mathbb P^3$. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 627-648. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a10/