Hasse principle for $G$-trace forms
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 437-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a global field of characteristic not 2. We prove a local-global principle for the existence of self-dual normal bases, and more generally for the isomorphism of $G$-trace forms, for $G$-Galois algebras over $k$.
Keywords: Hasse principle, $G$-trace forms, induction-restriction, Burnside rings.
Mots-clés : Galois algebras
@article{IM2_2013_77_3_a1,
     author = {E. Bayer-Fluckiger and R. Parimala and J-P. Serre},
     title = {Hasse principle for $G$-trace forms},
     journal = {Izvestiya. Mathematics },
     pages = {437--460},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/}
}
TY  - JOUR
AU  - E. Bayer-Fluckiger
AU  - R. Parimala
AU  - J-P. Serre
TI  - Hasse principle for $G$-trace forms
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 437
EP  - 460
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/
LA  - en
ID  - IM2_2013_77_3_a1
ER  - 
%0 Journal Article
%A E. Bayer-Fluckiger
%A R. Parimala
%A J-P. Serre
%T Hasse principle for $G$-trace forms
%J Izvestiya. Mathematics 
%D 2013
%P 437-460
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/
%G en
%F IM2_2013_77_3_a1
E. Bayer-Fluckiger; R. Parimala; J-P. Serre. Hasse principle for $G$-trace forms. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 437-460. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/

[A6] Springer-Verlag, 1998 | MR | Zbl

[A8] N. Bourbaki, Algèbre, Chap. 8, Modules et anneaux semi-simples, new revised edition, Springer-Verlag, 2012 | MR | Zbl

[A9] N. Bourbaki, Algèbre, Chap. 9, Formes sesquilinéaires et formes quadratiques, Hermann, Paris, 1959 ; new printing, Springer-Verlag, 2006 | MR | Zbl

[BFL 90] E. Bayer–Fluckiger H. W. Lenstra, Jr., “Forms in odd degree extensions and self-dual normal bases”, Amer. J. Math., 112 (1990), 359–373 | DOI | MR | Zbl

[BFP 11] E. Bayer–Fluckiger R. Parimala, “Galois Algebras, Hasse Principle and Induction–Restriction Methods”, Documenta Math., 16 (2011), 677–707 ; “Errata” (to appear) | MR | Zbl

[BFS 94] E. Bayer–Fluckiger J–P. Serre, “Torsions quadratiques et bases normales autoduales”, Amer. J. Math., 116 (1994), 1–64 | DOI | MR | Zbl

[B 91] D. J. Benson,, Representations and Cohomology I, Cambridge studies in advanced mathematics, 30, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[K 91] M. Knus, Quadratic and Hermitian Forms over Rings, Grundlehren math. Wiss., 294, Springer–Verlag, 1991 | DOI | MR | Zbl

[KMRT 98] M. Knus, A. Merkurjev, M. Rost J–P. Tignol, The Book of Involutions, AMS Colloquium Publications, 44, 1998 | MR | Zbl

[M 86] J. Morales, “Integral bilinear forms with a group action”, J. Algebra, 98 (1986), 470–484 | DOI | MR | Zbl

[QSS 79] H–G. Quebbemann, W. Scharlau M. Schulte, “Quadratic and hermitian forms in additive and abelian categories”, J. Algebra, 59 (1979), 264–289 | DOI | MR | Zbl

[QSSS 76] H–G. Quebbemann, R. Scharlau, W. Scharlau M. Schulte, “Quadratische Formen in additiven Kategorien”, Bull. Soc. Math. France, Mémoire, 48 (1976), 93–101 | MR | Zbl

[R 11] C. R. Riehm, Introduction to Orthogonal, Symplectic and Unitary Representations of Finite Groups, Fields Institute Monographies, 28, AMS, 2011 | MR | Zbl

[S 85] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren math. Wiss., 270, Springer–Verlag, 1985 | DOI | MR | Zbl