Hasse principle for $G$-trace forms
Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 437-460

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a global field of characteristic not 2. We prove a local-global principle for the existence of self-dual normal bases, and more generally for the isomorphism of $G$-trace forms, for $G$-Galois algebras over $k$.
Keywords: Hasse principle, $G$-trace forms, induction-restriction, Burnside rings.
Mots-clés : Galois algebras
@article{IM2_2013_77_3_a1,
     author = {E. Bayer-Fluckiger and R. Parimala and J-P. Serre},
     title = {Hasse principle for $G$-trace forms},
     journal = {Izvestiya. Mathematics },
     pages = {437--460},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/}
}
TY  - JOUR
AU  - E. Bayer-Fluckiger
AU  - R. Parimala
AU  - J-P. Serre
TI  - Hasse principle for $G$-trace forms
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 437
EP  - 460
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/
LA  - en
ID  - IM2_2013_77_3_a1
ER  - 
%0 Journal Article
%A E. Bayer-Fluckiger
%A R. Parimala
%A J-P. Serre
%T Hasse principle for $G$-trace forms
%J Izvestiya. Mathematics 
%D 2013
%P 437-460
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/
%G en
%F IM2_2013_77_3_a1
E. Bayer-Fluckiger; R. Parimala; J-P. Serre. Hasse principle for $G$-trace forms. Izvestiya. Mathematics , Tome 77 (2013) no. 3, pp. 437-460. http://geodesic.mathdoc.fr/item/IM2_2013_77_3_a1/