Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 407-434

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Lebesgue space $L^{p(x)}_{2\pi}$ with variable exponent $p(x)$. It consists of measurable functions $f(x)$ for which the integral $\int_0^{2\pi}|f(x)|^{p(x)}\,dx$ exists. We establish an analogue of Jackson's first theorem in the case when the $2\pi$-periodic variable exponent $p(x)\geqslant1$ satisfies the condition \begin{equation*} |p(x')-p(x'')|\ln\frac{2\pi}{|x'-x''|}=O(1),\qquad x',x''\in[-\pi,\pi]. \end{equation*} Under the additional assumption $p_-=\min_x p(x)>1$ we also get an analogue of Jackson's second theorem. We establish an $L^{p(x)}_{2\pi}$-analogue of Bernstein's estimate for the derivative of a trigonometric polynomial and use it to prove an inverse theorem for the analogues of the Lipschitz classes $\mathrm{Lip}(\alpha,M)_{p(\,\cdot\,)}\subset L^{p(x)}_{2\pi}$ for $0\alpha1$. Thus we establish direct and inverse theorems of the theory of approximation by trigonometric polynomials in the classes $\mathrm{Lip}(\alpha,M)_{p(\,\cdot\,)}$. In the definition of the modulus of continuity of a function $f(x)\in L^{p(x)}_{2\pi}$, we replace the ordinary shift $f^h(x)=f(x+h)$ by an averaged shift determined by Steklov's function $s_h(f)(x)=\frac{1}{h}\int_0^hf(x+t)\,dt$.
Keywords: approximation by trigonometric polynomials, direct and inverse theorems, modulus of continuity.
Mots-clés : Lebesgue and Sobolev spaces with variable exponent
@article{IM2_2013_77_2_a7,
     author = {I. I. Sharapudinov},
     title = {Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {407--434},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 407
EP  - 434
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/
LA  - en
ID  - IM2_2013_77_2_a7
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials
%J Izvestiya. Mathematics 
%D 2013
%P 407-434
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/
%G en
%F IM2_2013_77_2_a7
I. I. Sharapudinov. Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 407-434. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/