Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 407-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Lebesgue space $L^{p(x)}_{2\pi}$ with variable exponent $p(x)$. It consists of measurable functions $f(x)$ for which the integral $\int_0^{2\pi}|f(x)|^{p(x)}\,dx$ exists. We establish an analogue of Jackson's first theorem in the case when the $2\pi$-periodic variable exponent $p(x)\geqslant1$ satisfies the condition \begin{equation*} |p(x')-p(x'')|\ln\frac{2\pi}{|x'-x''|}=O(1),\qquad x',x''\in[-\pi,\pi]. \end{equation*} Under the additional assumption $p_-=\min_x p(x)>1$ we also get an analogue of Jackson's second theorem. We establish an $L^{p(x)}_{2\pi}$-analogue of Bernstein's estimate for the derivative of a trigonometric polynomial and use it to prove an inverse theorem for the analogues of the Lipschitz classes $\mathrm{Lip}(\alpha,M)_{p(\,\cdot\,)}\subset L^{p(x)}_{2\pi}$ for $0\alpha1$. Thus we establish direct and inverse theorems of the theory of approximation by trigonometric polynomials in the classes $\mathrm{Lip}(\alpha,M)_{p(\,\cdot\,)}$. In the definition of the modulus of continuity of a function $f(x)\in L^{p(x)}_{2\pi}$, we replace the ordinary shift $f^h(x)=f(x+h)$ by an averaged shift determined by Steklov's function $s_h(f)(x)=\frac{1}{h}\int_0^hf(x+t)\,dt$.
Keywords: approximation by trigonometric polynomials, direct and inverse theorems, modulus of continuity.
Mots-clés : Lebesgue and Sobolev spaces with variable exponent
@article{IM2_2013_77_2_a7,
     author = {I. I. Sharapudinov},
     title = {Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {407--434},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 407
EP  - 434
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/
LA  - en
ID  - IM2_2013_77_2_a7
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials
%J Izvestiya. Mathematics 
%D 2013
%P 407-434
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/
%G en
%F IM2_2013_77_2_a7
I. I. Sharapudinov. Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 407-434. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a7/

[1] W. Orlicz, “Über konjugierte Exponentenfolgen”, Studia Math., 3 (1931), 200–211 | Zbl

[2] H. Nakano, Modulared semi-ordered linear spaces, Maruzen, Tokyo, 1950 | MR | Zbl

[3] H. Nakano, Topology of linear topological spaces, Maruzen, Tokyo, 1951 | MR

[4] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[5] J. Musielak, W. Orlicz, “On modular spaces”, Studia Math., 18 (1959), 49–65 | MR | Zbl

[6] I. V. Tsenov, “Generalization of the problem of best approximation of a function in the space $L^s$”, Uch. Zap. Dagestan Gos. Univ., 7 (1961), 25–37

[7] A. N. Kolmogorov, “Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes”, Studia Math., 5 (1934), 29–33 | Zbl

[8] I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl

[9] I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | DOI | MR | Zbl

[10] I. I. Sharapudinov, “Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators”, Math. Notes, 59:2 (1996), 205–212 | DOI | DOI | MR | Zbl

[11] L. Diening, “Maximal function on generalized Lebesgue spaces $L^{p(\,\cdot\,)}$”, Math. Inequal. Appl., 7:2 (2004), 245–253 | DOI | MR | Zbl

[12] L. Diening, M. Ružička, “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\,\cdot\,)}$ and problems related to fluid dynamics”, J. Reine Angew. Math., 563 (2003), 197–220 | DOI | MR | Zbl

[13] L. Diening, P. Hästö, A. Nekvinda, “Open problems in variable exponent Lebesgue and Sobolev spaces”, Function spaces, differential operators and nonlinear analysis (Milovy, Bohemian-Moravian Uplands, 2004), Math. Inst. Acad. Sci. Czech Republick, Praha, 2005

[14] L. Diening, P. Harjulehto, P. Hasto, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin–Heidelberg, 2011 | DOI | MR | Zbl

[15] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR-Izv., 29:1 (1987), 33–66 | DOI | MR | Zbl

[16] V. V. Zhikov, “Meyers type estimates for the solution of a nonlinear Stokes system”, Differential Equations, 33:1 (1997), 108–115 | MR | Zbl

[17] V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl

[18] V. Kokilashvili, N. Samko, S. Samko, “Singular operators in variable spaces $L^{p(\,\cdot\,)}(\Omega,\rho)$ with oscillating weights”, Math. Nachr., 280:9–10 (2007), 1145–1156 | DOI | MR | Zbl

[19] V. Kokilashvili, S. Samko, “Singular integral equations in the Lebesgue spaces with variable exponent”, Proc. A. Razmadze Math. Inst., 131 (2003), 61–78 | MR | Zbl

[20] V. Kokilashvili, S. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent”, Georgian Math. J., 10:1 (2003), 145–156 | MR | Zbl

[21] V. Kokilashvili, S. Samko, “Weighted boundedness in Lebesgue spaces with variable exponents of classical operators on Carleson curves”, Proc. A. Razmadze Math. Inst., 138 (2005), 106–110 | MR | Zbl

[22] V. Kokilashvili, S. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent”, Georgian Math. J., 10:1 (2003), 145–156 | MR | Zbl

[23] S. G. Samko, “Convolution type operators in $L^{p(x)}$”, Integral Transform. Spec. Funct., 7:1–2 (1998), 123–144 | DOI | MR | Zbl

[24] S. Samko, “Hardy inequality in the generalized Lebesgue spaces”, Fract. Calc. Appl. Anal., 6:4 (2003), 355–362 | MR | Zbl

[25] S. Samko, “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators”, Integral Transforms Spec. Funct., 16:5–6 (2005), 461–482 | DOI | MR | Zbl

[26] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}(E)$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR | Zbl

[27] I. I. Sharapudinov, “Priblizhenie funktsii v metrike prostranstva $L^{p(x)}([a,b])$ i kvadraturnye formuly”, Constructive function theory'81, Proceedings of the International Conference (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 189–193 | MR | Zbl

[28] A. Guven, D. M. Israfilov, “Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl

[29] R. Akgün, V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Banach J. Math. Anal., 5:1 (2011), 70–82 | MR | Zbl

[30] R. Akgün, “Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth”, Georgian Math. J., 18:2 (2011), 203–235 | MR | Zbl

[31] A. Guven, “Trigonometric approximation by matrix transforms in $L^{p(x)}$ spaces”, Anal. Appl. (Singap.), 10:1 (2012), 47–65 | DOI | MR | Zbl

[32] R. Akgün, V. Kokilashvili, “The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Georgian Math. J., 18:3 (2011), 399–423 | MR | Zbl

[33] R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent”, Ukrainian Math. J., 63:1 (2011), 1–26 | DOI

[34] A. Zygmund, Trigonometric series, v. I, II, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl