Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_2_a6, author = {L. A. Takhtajan}, title = {Quantum field theories on algebraic curves. {I.~Additive} bosons}, journal = {Izvestiya. Mathematics }, pages = {378--406}, publisher = {mathdoc}, volume = {77}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a6/} }
L. A. Takhtajan. Quantum field theories on algebraic curves. I.~Additive bosons. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 378-406. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a6/
[1] J.-P. Serre, Groupes algébriques et corps de classes, Hermann Cie, Paris, 1959 | MR | Zbl | Zbl
[2] J. Tate, “Residues of differentials on curves”, Ann. Sci. École Norm. Sup. (4), 1:1 (1968), 149–159 | MR | Zbl
[3] E. Arbarello, C. De Concini, V. G. Kac, “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta functions – Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 171–190 | MR | Zbl
[4] D. Kazhdan, Free fermions on an algebraic curve (Lecture at AMS Summer Institute Theta functions), 1987
[5] E. Witten, “Free fermions on an algebraic curve”, The mathematical heritage of Hermann Weyl, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988, 329–344 | MR | Zbl
[6] E. Witten, “Quantum field theory, Grassmannians, and algebraic curves”, Comm. Math. Phys., 113:4 (1988), 529–600 | DOI | MR | Zbl
[7] L. A. Takhtajan, “Quantum field theories on an algebraic curve”, Lett. Math. Phys., 52:1 (2000), 79–91 | DOI | MR | Zbl
[8] K. Iwasawa, Algebraic functions, Transl. Math. Monogr., 118, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[9] I. Kra, Automorphic forms and Kleinian groups, Benjamin, Reading, MA, 1972 | MR | MR | Zbl
[10] N. Kawamoto, Y. Namikawa, A. Tsuchiya, Y. Yamada, “Geometric realization of conformal field theory on Riemann surfaces”, Comm. Math. Phys., 116:2 (1988), 247–308 | DOI | MR | Zbl
[11] C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys, 6, Amer. Math. Soc., New York, 1951 | MR | MR | Zbl | Zbl
[12] M. Eichler, Introduction to the theory of algebraic numbers and functions, Academic Press, New York, 1966 | MR | Zbl
[13] V. G. Kac, Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR | MR | Zbl | Zbl
[14] E. Frenkel, D. Ben-Zvi, Vertex algebras and algebraic curves, Math. Surveys Monogr., 88, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[15] S. Lefschetz, Algebraic topology, Amer. Math. Soc., New York, 1942 | MR | Zbl
[16] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl
[17] A. Weil, “Sur les fonctions algébriques à corps de constantes fini”, C. R. Acad. Sci. Paris, 210 (1940), 592–594 | MR | Zbl
[18] S. O. Gorchinskii, “Poincaré biextension and idèles on an algebraic curve”, Sb. Math., 197:1 (2006), 23–36 | DOI | DOI | MR | Zbl