Quantum field theories on algebraic curves. I.~Additive bosons
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 378-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Serre's adelic interpretation of cohomology, we develop a ‘differential and integral calculus’ on an algebraic curve $X$ over an algebraically closed field $k$ of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on $X$ and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve $X$. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the $k$-vector space of rational functions on $X$ to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.
Keywords: algebraic curves and algebraic functions, additive multi-valued functions, additive Ward identities, Heisenberg algebra, current algebra on an algebraic curve, generalized residue theorem, Fock spaces, quantum theories of free bosons on an algebraic curve, expectation value functional.
Mots-clés : adèles
@article{IM2_2013_77_2_a6,
     author = {L. A. Takhtajan},
     title = {Quantum field theories on algebraic curves. {I.~Additive} bosons},
     journal = {Izvestiya. Mathematics },
     pages = {378--406},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a6/}
}
TY  - JOUR
AU  - L. A. Takhtajan
TI  - Quantum field theories on algebraic curves. I.~Additive bosons
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 378
EP  - 406
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a6/
LA  - en
ID  - IM2_2013_77_2_a6
ER  - 
%0 Journal Article
%A L. A. Takhtajan
%T Quantum field theories on algebraic curves. I.~Additive bosons
%J Izvestiya. Mathematics 
%D 2013
%P 378-406
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a6/
%G en
%F IM2_2013_77_2_a6
L. A. Takhtajan. Quantum field theories on algebraic curves. I.~Additive bosons. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 378-406. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a6/

[1] J.-P. Serre, Groupes algébriques et corps de classes, Hermann Cie, Paris, 1959 | MR | Zbl | Zbl

[2] J. Tate, “Residues of differentials on curves”, Ann. Sci. École Norm. Sup. (4), 1:1 (1968), 149–159 | MR | Zbl

[3] E. Arbarello, C. De Concini, V. G. Kac, “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta functions – Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 171–190 | MR | Zbl

[4] D. Kazhdan, Free fermions on an algebraic curve (Lecture at AMS Summer Institute Theta functions), 1987

[5] E. Witten, “Free fermions on an algebraic curve”, The mathematical heritage of Hermann Weyl, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988, 329–344 | MR | Zbl

[6] E. Witten, “Quantum field theory, Grassmannians, and algebraic curves”, Comm. Math. Phys., 113:4 (1988), 529–600 | DOI | MR | Zbl

[7] L. A. Takhtajan, “Quantum field theories on an algebraic curve”, Lett. Math. Phys., 52:1 (2000), 79–91 | DOI | MR | Zbl

[8] K. Iwasawa, Algebraic functions, Transl. Math. Monogr., 118, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[9] I. Kra, Automorphic forms and Kleinian groups, Benjamin, Reading, MA, 1972 | MR | MR | Zbl

[10] N. Kawamoto, Y. Namikawa, A. Tsuchiya, Y. Yamada, “Geometric realization of conformal field theory on Riemann surfaces”, Comm. Math. Phys., 116:2 (1988), 247–308 | DOI | MR | Zbl

[11] C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys, 6, Amer. Math. Soc., New York, 1951 | MR | MR | Zbl | Zbl

[12] M. Eichler, Introduction to the theory of algebraic numbers and functions, Academic Press, New York, 1966 | MR | Zbl

[13] V. G. Kac, Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 | MR | MR | Zbl | Zbl

[14] E. Frenkel, D. Ben-Zvi, Vertex algebras and algebraic curves, Math. Surveys Monogr., 88, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[15] S. Lefschetz, Algebraic topology, Amer. Math. Soc., New York, 1942 | MR | Zbl

[16] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[17] A. Weil, “Sur les fonctions algébriques à corps de constantes fini”, C. R. Acad. Sci. Paris, 210 (1940), 592–594 | MR | Zbl

[18] S. O. Gorchinskii, “Poincaré biextension and idèles on an algebraic curve”, Sb. Math., 197:1 (2006), 23–36 | DOI | DOI | MR | Zbl