Moduli spaces of model surfaces with one-dimensional complex tangent
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 354-377

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the moduli spaces $\mathcal{M}(n,K)$ that parametrize the set of mutually inequivalent model surfaces. We construct the spaces $\mathcal{M}(1,K)$ for $K\le13$ and prove some results on the structure of $\mathcal{M}(1,K)$ for arbitrary $K$.
Keywords: multidimensional complex analysis, CR-manifold, invariant theory.
@article{IM2_2013_77_2_a5,
     author = {I. B. Mamai},
     title = {Moduli spaces of model surfaces with one-dimensional complex tangent},
     journal = {Izvestiya. Mathematics },
     pages = {354--377},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/}
}
TY  - JOUR
AU  - I. B. Mamai
TI  - Moduli spaces of model surfaces with one-dimensional complex tangent
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 354
EP  - 377
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/
LA  - en
ID  - IM2_2013_77_2_a5
ER  - 
%0 Journal Article
%A I. B. Mamai
%T Moduli spaces of model surfaces with one-dimensional complex tangent
%J Izvestiya. Mathematics 
%D 2013
%P 354-377
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/
%G en
%F IM2_2013_77_2_a5
I. B. Mamai. Moduli spaces of model surfaces with one-dimensional complex tangent. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 354-377. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/