Moduli spaces of model surfaces with one-dimensional complex tangent
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 354-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the moduli spaces $\mathcal{M}(n,K)$ that parametrize the set of mutually inequivalent model surfaces. We construct the spaces $\mathcal{M}(1,K)$ for $K\le13$ and prove some results on the structure of $\mathcal{M}(1,K)$ for arbitrary $K$.
Keywords: multidimensional complex analysis, CR-manifold, invariant theory.
@article{IM2_2013_77_2_a5,
     author = {I. B. Mamai},
     title = {Moduli spaces of model surfaces with one-dimensional complex tangent},
     journal = {Izvestiya. Mathematics },
     pages = {354--377},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/}
}
TY  - JOUR
AU  - I. B. Mamai
TI  - Moduli spaces of model surfaces with one-dimensional complex tangent
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 354
EP  - 377
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/
LA  - en
ID  - IM2_2013_77_2_a5
ER  - 
%0 Journal Article
%A I. B. Mamai
%T Moduli spaces of model surfaces with one-dimensional complex tangent
%J Izvestiya. Mathematics 
%D 2013
%P 354-377
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/
%G en
%F IM2_2013_77_2_a5
I. B. Mamai. Moduli spaces of model surfaces with one-dimensional complex tangent. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 354-377. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a5/

[1] M. H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo (2), 23:1 (1907), 185–220 | DOI | Zbl

[2] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133:1 (1974), 219–271 | DOI | MR | MR | Zbl | Zbl

[3] V. K. Beloshapka, “On holomorphic transformations of a quadric”, Math. USSR-Sb., 72:1 (1992), 189–205 | DOI | MR | Zbl

[4] V. K. Beloshapka, “A cubic model of a real variety”, Math. Notes, 70:4 (2001), 457–470 | DOI | DOI | MR | Zbl

[5] V. K. Beloshapka, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems”, Russian Math. Surveys, 57:1 (2002), 1–41 | DOI | DOI | MR | Zbl

[6] V. K. Beloshapka, “Universal models for real submanifolds”, Math. Notes, 75:4 (2004), 475–488 | DOI | DOI | MR | Zbl

[7] V. K. Beloshapka, “Moduli space of model real submanifolds”, Russ. J. Math. Phys., 13:3 (2006), 245–252 | DOI | MR | Zbl

[8] V. L. Popov, Eh. B. Vinberg, “Invariant theory”, Algebraic geometry. IV: Linear algebraic groups, invariant theory, Encycl. Math. Sci., 55, 1994, 123–278 | MR | MR | Zbl | Zbl

[9] I. B. Mamai, “Model $CR$-manifolds with one-dimensional complex tangent”, Russ. J. Math. Phys., 16:1 (2009), 97–102 | DOI | MR | Zbl

[10] B. V. Shabat, Introduction à l'analyse complexe, Tome 2, Mir, Moscow, 1990 | MR | MR | Zbl | Zbl

[11] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, Berlin, 1994 | MR | MR | Zbl | Zbl