Asymptotic expansion of solutions to the periodic problem for a~non-linear Sobolev-type equation
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 313-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the long-time behaviour of solutions to the periodic problem for a non-linear Sobolev-type equation. In the case of non-small initial perturbations we get estimates for the decay as a function of time. In the case of small initial data we prove an asymptotic formula for solutions to the periodic problem for a non-linear Sobolev-type equation.
Keywords: periodic problem, asymptotic behaviour.
Mots-clés : Sobolev-type equations
@article{IM2_2013_77_2_a3,
     author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
     title = {Asymptotic expansion of solutions to the periodic problem for a~non-linear {Sobolev-type} equation},
     journal = {Izvestiya. Mathematics },
     pages = {313--324},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/}
}
TY  - JOUR
AU  - E. I. Kaikina
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - Asymptotic expansion of solutions to the periodic problem for a~non-linear Sobolev-type equation
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 313
EP  - 324
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/
LA  - en
ID  - IM2_2013_77_2_a3
ER  - 
%0 Journal Article
%A E. I. Kaikina
%A P. I. Naumkin
%A I. A. Shishmarev
%T Asymptotic expansion of solutions to the periodic problem for a~non-linear Sobolev-type equation
%J Izvestiya. Mathematics 
%D 2013
%P 313-324
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/
%G en
%F IM2_2013_77_2_a3
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. Asymptotic expansion of solutions to the periodic problem for a~non-linear Sobolev-type equation. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/

[1] S. L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[2] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[3] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[4] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations”, Russian Math. Surveys, 64:3 (2009), 399–468 | DOI | DOI | MR | Zbl

[5] P. C. Fife, “Asymptotic states for equations of reaction and diffusion”, Bull. Amer. Math. Soc., 84:1 (1978), 693–726 | DOI | MR | Zbl

[6] B. T. Hayes, “Stability of solutions to a destabilized Hopf equation”, Comm. Pure Appl. Math., 48:2 (1995), 157–166 | DOI | MR | Zbl

[7] W. Kirsch, A. Kutzelnigg, “Time asymptotics for solutions of the Burgers equation with a periodic force”, Math. Z., 232:4 (1999), 691–705 | DOI | MR | Zbl

[8] P. Biler, “Large-time behaviour of periodic solutions to dissipative equations of Korteweg-de Vries–Burgers type”, Bull. Polish Acad. Sci. Math., 32:1–2 (1984), 401–405 | MR | Zbl

[9] C. Bu, R. Shull, K. Zhao, “A periodic boundary value problem for a generalized 2D Ginzburg–Landau equation”, Hokkaido Math. J., 27:1 (1998), 197–211 | MR | Zbl

[10] Y. Yang, “Global spatially periodic solutions to the Ginzburg–Landau equation”, Proc. Roy. Soc. Edinburgh Sect. A, 110:3–4 (1988), 263–273 | DOI | MR | Zbl

[11] D. Lu, L. Tian, Z. Liu, “Wavelet basis analysis in perturbed periodic KdV equation”, Appl. Math. Mech. (English Ed.), 19:11 (1998), 1053–1058 | DOI | MR | Zbl

[12] B. Guo, X. M. Xiang, “The large time convergence of spectral method for generalized Kuramoto–Sivashinsky equations”, J. Comput. Math., 15:1 (1997), 1–13 | MR | Zbl

[13] J. Xing, “Global strong solution for a class of Burgers-BBM type equation”, Gaoxiao Yingyong Shuxue Xuebao, 6:1 (1991), 31–37 | MR | Zbl

[14] V. V. Varlamov, “On spatially periodic solutions of the damped Boussinesq equation”, Differential Integral Equations, 10:6 (1997), 1197–1211 | MR | Zbl

[15] C. M. Dafermos, “Large time behavior of periodic solutions of hyperbolic systems of conservation laws”, J. Differential Equations, 121:1 (1995), 183–202 | DOI | MR | Zbl

[16] C. Sinestrari, “Large time behaviour of solutions of balance laws with periodic initial data”, NoDEA. Nonlinear Differential Equations Appl., 2:1 (1995), 111–131 | DOI | MR | Zbl

[17] A. Constantin, J. Escher, “Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation”, Comm. Pure Appl. Math., 51:5 (1998), 475–504 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[18] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Periodic problem for a model nonlinear evolution equation”, Adv. Differential Equations, 7:5 (2002), 581–616 | MR | Zbl

[19] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[20] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl