Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_2_a3, author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev}, title = {Asymptotic expansion of solutions to the periodic problem for a~non-linear {Sobolev-type} equation}, journal = {Izvestiya. Mathematics }, pages = {313--324}, publisher = {mathdoc}, volume = {77}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/} }
TY - JOUR AU - E. I. Kaikina AU - P. I. Naumkin AU - I. A. Shishmarev TI - Asymptotic expansion of solutions to the periodic problem for a~non-linear Sobolev-type equation JO - Izvestiya. Mathematics PY - 2013 SP - 313 EP - 324 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/ LA - en ID - IM2_2013_77_2_a3 ER -
%0 Journal Article %A E. I. Kaikina %A P. I. Naumkin %A I. A. Shishmarev %T Asymptotic expansion of solutions to the periodic problem for a~non-linear Sobolev-type equation %J Izvestiya. Mathematics %D 2013 %P 313-324 %V 77 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/ %G en %F IM2_2013_77_2_a3
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. Asymptotic expansion of solutions to the periodic problem for a~non-linear Sobolev-type equation. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a3/
[1] S. L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl
[2] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl
[3] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[4] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations”, Russian Math. Surveys, 64:3 (2009), 399–468 | DOI | DOI | MR | Zbl
[5] P. C. Fife, “Asymptotic states for equations of reaction and diffusion”, Bull. Amer. Math. Soc., 84:1 (1978), 693–726 | DOI | MR | Zbl
[6] B. T. Hayes, “Stability of solutions to a destabilized Hopf equation”, Comm. Pure Appl. Math., 48:2 (1995), 157–166 | DOI | MR | Zbl
[7] W. Kirsch, A. Kutzelnigg, “Time asymptotics for solutions of the Burgers equation with a periodic force”, Math. Z., 232:4 (1999), 691–705 | DOI | MR | Zbl
[8] P. Biler, “Large-time behaviour of periodic solutions to dissipative equations of Korteweg-de Vries–Burgers type”, Bull. Polish Acad. Sci. Math., 32:1–2 (1984), 401–405 | MR | Zbl
[9] C. Bu, R. Shull, K. Zhao, “A periodic boundary value problem for a generalized 2D Ginzburg–Landau equation”, Hokkaido Math. J., 27:1 (1998), 197–211 | MR | Zbl
[10] Y. Yang, “Global spatially periodic solutions to the Ginzburg–Landau equation”, Proc. Roy. Soc. Edinburgh Sect. A, 110:3–4 (1988), 263–273 | DOI | MR | Zbl
[11] D. Lu, L. Tian, Z. Liu, “Wavelet basis analysis in perturbed periodic KdV equation”, Appl. Math. Mech. (English Ed.), 19:11 (1998), 1053–1058 | DOI | MR | Zbl
[12] B. Guo, X. M. Xiang, “The large time convergence of spectral method for generalized Kuramoto–Sivashinsky equations”, J. Comput. Math., 15:1 (1997), 1–13 | MR | Zbl
[13] J. Xing, “Global strong solution for a class of Burgers-BBM type equation”, Gaoxiao Yingyong Shuxue Xuebao, 6:1 (1991), 31–37 | MR | Zbl
[14] V. V. Varlamov, “On spatially periodic solutions of the damped Boussinesq equation”, Differential Integral Equations, 10:6 (1997), 1197–1211 | MR | Zbl
[15] C. M. Dafermos, “Large time behavior of periodic solutions of hyperbolic systems of conservation laws”, J. Differential Equations, 121:1 (1995), 183–202 | DOI | MR | Zbl
[16] C. Sinestrari, “Large time behaviour of solutions of balance laws with periodic initial data”, NoDEA. Nonlinear Differential Equations Appl., 2:1 (1995), 111–131 | DOI | MR | Zbl
[17] A. Constantin, J. Escher, “Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation”, Comm. Pure Appl. Math., 51:5 (1998), 475–504 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[18] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Periodic problem for a model nonlinear evolution equation”, Adv. Differential Equations, 7:5 (2002), 581–616 | MR | Zbl
[19] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl
[20] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl