Relaxation self-oscillations in Hopfield networks with delay
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 271-312
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two singularly perturbed non-linear systems
of differential-difference equations with delay; one of them is
a mathematical model of a single Hopfield neuron and the other simulates the
functioning of a circular network of three or more neurons connected
unidirectionally. We study the problems of existence, asymptotic behaviour,
and stability for these systems of relaxation periodic motions.
Keywords:
differential-difference equations, Hopfield neuron networks, relaxation cycle,
stability, buffer property.
@article{IM2_2013_77_2_a2,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {Relaxation self-oscillations in {Hopfield} networks with delay},
journal = {Izvestiya. Mathematics },
pages = {271--312},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Relaxation self-oscillations in Hopfield networks with delay JO - Izvestiya. Mathematics PY - 2013 SP - 271 EP - 312 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/ LA - en ID - IM2_2013_77_2_a2 ER -
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Relaxation self-oscillations in Hopfield networks with delay. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 271-312. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/