Relaxation self-oscillations in Hopfield networks with delay
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 271-312

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two singularly perturbed non-linear systems of differential-difference equations with delay; one of them is a mathematical model of a single Hopfield neuron and the other simulates the functioning of a circular network of three or more neurons connected unidirectionally. We study the problems of existence, asymptotic behaviour, and stability for these systems of relaxation periodic motions.
Keywords: differential-difference equations, Hopfield neuron networks, relaxation cycle, stability, buffer property.
@article{IM2_2013_77_2_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Relaxation self-oscillations in {Hopfield} networks with delay},
     journal = {Izvestiya. Mathematics },
     pages = {271--312},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Relaxation self-oscillations in Hopfield networks with delay
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 271
EP  - 312
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/
LA  - en
ID  - IM2_2013_77_2_a2
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Relaxation self-oscillations in Hopfield networks with delay
%J Izvestiya. Mathematics 
%D 2013
%P 271-312
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/
%G en
%F IM2_2013_77_2_a2
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Relaxation self-oscillations in Hopfield networks with delay. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 271-312. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/