Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_2_a2, author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov}, title = {Relaxation self-oscillations in {Hopfield} networks with delay}, journal = {Izvestiya. Mathematics }, pages = {271--312}, publisher = {mathdoc}, volume = {77}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/} }
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Relaxation self-oscillations in Hopfield networks with delay JO - Izvestiya. Mathematics PY - 2013 SP - 271 EP - 312 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/ LA - en ID - IM2_2013_77_2_a2 ER -
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Relaxation self-oscillations in Hopfield networks with delay. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 271-312. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/
[1] J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons”, Proc. Nat. Acad. Sci. U.S.A., 81:10 (1984), 3088–3092 | DOI
[2] S. Haykin, Neural networks. A comprehensive foundation, Macmillan College Publ., New York, 1999 | Zbl
[3] C. M. Marcus, R. M. Westervelt, “Stability of analog neural networks with delay”, Phys. Rev. A (3), 39:1 (1989), 347–359 | DOI | MR
[4] J. Bélair, “Stability in a model of a delayed neural network”, J. Dynam. Differential Equations, 5:4 (1993), 607–623 | DOI | MR | Zbl
[5] J. Bélair, S. A. Campbell, P. van den Driessche, “Frustration, stability, and delay-induced oscillations in a neural network model”, SIAM J. Appl. Math., 56:1 (1996), 245–255 | DOI | MR | Zbl
[6] K. Gopalsamy, I. Leung, “Delay induced periodicity in a neural netlet of excitation and inhibition”, Phys. D, 89:3–4 (1996), 395–426 | DOI | MR | Zbl
[7] X. Liao, Y. Liao, “Stability of Hopfield-type neural networks. II”, Sci. China Ser. A, 40:8 (1997), 813–816 | DOI | MR | Zbl
[8] H. Ye, A. N. Michel, K. Wang, “Qualitative analysis of Cohen–Grossberg neural networks with multiple delays”, Phys. Rev. E (3), 51:3 (1995), 2611–2618 | DOI | MR
[9] S. A. Campbell, S. Ruan, J. Wei, “Qualitative analysis of a neural network model with multiple time delays”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:8 (1999), 1585–1595 | DOI | MR | Zbl
[10] P. van den Driessche, J. Wu, X. Zou, “Stabilization role of inhibitory self-connections in a delayed neural network”, Phys. D, 150:1–2 (2001), 84–90 | DOI | MR | Zbl
[11] Y. Li, “Hopf bifurcation analysis in a tabu learning neuron model with two delays”, ISRN Appl. Math., 2011, ID 636732 | DOI | MR | Zbl
[12] Y. Li, “Stability and bifurcation analysis of a three-dimensional recurrent neural network with time delay”, J. Appl. Math., 2012, ID 357382 | DOI | MR | Zbl
[13] A. Yu. Kolesov, Yu. S. Kolesov, “Relaxation oscillations in mathematical models of ecology”, Proc. Steklov Inst. Math., 199 (1995), 1–126 | MR | Zbl | Zbl
[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “A relay with delay and its $C^1$-approximation”, Proc. Steklov Inst. Math., 216 (1997), 119–146 | MR | Zbl
[15] A. Yu. Kolesov, N. Kh. Rozov, “Discrete autowaves in delay systems in ecology”, Dokl. Math., 82:2 (2010), 794–797 | DOI | MR | Zbl
[16] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “A modification of Hutchinson's equation”, Comput. Math. Math. Phys., 50:12 (2010), 1990–2002 | DOI | MR | Zbl
[17] A. Yu. Kolesov, N. Kh. Rozov, “The theory of relaxation oscillations for Hutchinson's equation”, Sb. Math., 202:6 (2011), 829–858 | DOI | DOI | MR | Zbl
[18] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems. I”, Differ. Equ., 47:7 (2011), 927–941 | DOI | MR | Zbl
[19] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980 | MR | MR | Zbl | Zbl
[20] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994 | MR | MR | Zbl | Zbl
[21] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[22] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005 | MR
[23] T. Kohonen, Associative memory, Springer-Verlag, Berlin–New York, 1977 | MR | MR | Zbl | Zbl