Relaxation self-oscillations in Hopfield networks with delay
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 271-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two singularly perturbed non-linear systems of differential-difference equations with delay; one of them is a mathematical model of a single Hopfield neuron and the other simulates the functioning of a circular network of three or more neurons connected unidirectionally. We study the problems of existence, asymptotic behaviour, and stability for these systems of relaxation periodic motions.
Keywords: differential-difference equations, Hopfield neuron networks, relaxation cycle, stability, buffer property.
@article{IM2_2013_77_2_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Relaxation self-oscillations in {Hopfield} networks with delay},
     journal = {Izvestiya. Mathematics },
     pages = {271--312},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Relaxation self-oscillations in Hopfield networks with delay
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 271
EP  - 312
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/
LA  - en
ID  - IM2_2013_77_2_a2
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Relaxation self-oscillations in Hopfield networks with delay
%J Izvestiya. Mathematics 
%D 2013
%P 271-312
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/
%G en
%F IM2_2013_77_2_a2
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Relaxation self-oscillations in Hopfield networks with delay. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 271-312. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a2/

[1] J. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons”, Proc. Nat. Acad. Sci. U.S.A., 81:10 (1984), 3088–3092 | DOI

[2] S. Haykin, Neural networks. A comprehensive foundation, Macmillan College Publ., New York, 1999 | Zbl

[3] C. M. Marcus, R. M. Westervelt, “Stability of analog neural networks with delay”, Phys. Rev. A (3), 39:1 (1989), 347–359 | DOI | MR

[4] J. Bélair, “Stability in a model of a delayed neural network”, J. Dynam. Differential Equations, 5:4 (1993), 607–623 | DOI | MR | Zbl

[5] J. Bélair, S. A. Campbell, P. van den Driessche, “Frustration, stability, and delay-induced oscillations in a neural network model”, SIAM J. Appl. Math., 56:1 (1996), 245–255 | DOI | MR | Zbl

[6] K. Gopalsamy, I. Leung, “Delay induced periodicity in a neural netlet of excitation and inhibition”, Phys. D, 89:3–4 (1996), 395–426 | DOI | MR | Zbl

[7] X. Liao, Y. Liao, “Stability of Hopfield-type neural networks. II”, Sci. China Ser. A, 40:8 (1997), 813–816 | DOI | MR | Zbl

[8] H. Ye, A. N. Michel, K. Wang, “Qualitative analysis of Cohen–Grossberg neural networks with multiple delays”, Phys. Rev. E (3), 51:3 (1995), 2611–2618 | DOI | MR

[9] S. A. Campbell, S. Ruan, J. Wei, “Qualitative analysis of a neural network model with multiple time delays”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:8 (1999), 1585–1595 | DOI | MR | Zbl

[10] P. van den Driessche, J. Wu, X. Zou, “Stabilization role of inhibitory self-connections in a delayed neural network”, Phys. D, 150:1–2 (2001), 84–90 | DOI | MR | Zbl

[11] Y. Li, “Hopf bifurcation analysis in a tabu learning neuron model with two delays”, ISRN Appl. Math., 2011, ID 636732 | DOI | MR | Zbl

[12] Y. Li, “Stability and bifurcation analysis of a three-dimensional recurrent neural network with time delay”, J. Appl. Math., 2012, ID 357382 | DOI | MR | Zbl

[13] A. Yu. Kolesov, Yu. S. Kolesov, “Relaxation oscillations in mathematical models of ecology”, Proc. Steklov Inst. Math., 199 (1995), 1–126 | MR | Zbl | Zbl

[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “A relay with delay and its $C^1$-approximation”, Proc. Steklov Inst. Math., 216 (1997), 119–146 | MR | Zbl

[15] A. Yu. Kolesov, N. Kh. Rozov, “Discrete autowaves in delay systems in ecology”, Dokl. Math., 82:2 (2010), 794–797 | DOI | MR | Zbl

[16] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “A modification of Hutchinson's equation”, Comput. Math. Math. Phys., 50:12 (2010), 1990–2002 | DOI | MR | Zbl

[17] A. Yu. Kolesov, N. Kh. Rozov, “The theory of relaxation oscillations for Hutchinson's equation”, Sb. Math., 202:6 (2011), 829–858 | DOI | DOI | MR | Zbl

[18] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems. I”, Differ. Equ., 47:7 (2011), 927–941 | DOI | MR | Zbl

[19] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980 | MR | MR | Zbl | Zbl

[20] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994 | MR | MR | Zbl | Zbl

[21] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[22] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005 | MR

[23] T. Kohonen, Associative memory, Springer-Verlag, Berlin–New York, 1977 | MR | MR | Zbl | Zbl