Spherical means on two-point homogeneous spaces and applications
Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 223-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the following fundamental problems of integral geometry for certain integral transformations related to the spherical mean operator: obtain necessary and sufficient conditions for injectivity, describe the kernel in the case of non-injectivity, and find an inversion formula. Our results have unexpected applications to overdetermined interpolation problems in the theory of entire functions.
Keywords: spherical means, symmetric spaces
Mots-clés : Pompeiu transform, inversion formulae.
@article{IM2_2013_77_2_a0,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Spherical means on two-point homogeneous spaces and applications},
     journal = {Izvestiya. Mathematics },
     pages = {223--252},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Spherical means on two-point homogeneous spaces and applications
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 223
EP  - 252
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a0/
LA  - en
ID  - IM2_2013_77_2_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Spherical means on two-point homogeneous spaces and applications
%J Izvestiya. Mathematics 
%D 2013
%P 223-252
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a0/
%G en
%F IM2_2013_77_2_a0
V. V. Volchkov; Vit. V. Volchkov. Spherical means on two-point homogeneous spaces and applications. Izvestiya. Mathematics , Tome 77 (2013) no. 2, pp. 223-252. http://geodesic.mathdoc.fr/item/IM2_2013_77_2_a0/

[1] S. Helgason, The Radon transform, Progr. Math., 5, Birkhäuser, Boston, MA, 1980 | MR | MR | Zbl | Zbl

[2] F. John, Plane waves and spherical means applied to partial differential equations, Interscience Publ., New York–London, 1955 | MR | Zbl

[3] C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Several complex variables. V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia Math. Sci., 54, Springer-Verlag, Berlin, 1993, 1–108 | MR | MR | Zbl | Zbl

[4] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | MR | Zbl

[5] L. Zalcman, “Supplementary bibliography to: "A bibliographic survey of the Pompeiu problem”, Radon transforms and tomography (South Hadley, MA, 2000), Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | DOI | MR | Zbl

[6] I. Netuka, J. Veselý, “Mean value property and harmonic functions”, Classical and modern potential theory and applications (Chateau de Bonas, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 430, Kluwer Acad. Publ., Dordrecht, 1994, 359–398 | MR | Zbl

[7] V. V. Volchkov, Vit. V. Volchkov, “Ekstremalnye zadachi integralnoi geometrii”, Matematika segodnya, 12 (2001), 51–79 | Zbl

[8] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[9] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | MR | Zbl

[10] Vit. V. Volchkov, “Functions with ball mean values equal to zero on compact two-point homogeneous spaces”, Sb. Math., 198:4 (2007), 465–490 | DOI | DOI | MR | Zbl

[11] V. V. Volchkov, “Local two-radii theorem in symmetric spaces”, Sb. Math., 198:11 (2007), 1553–1577 | DOI | DOI | MR | Zbl

[12] P. Ungar, “Freak theorem about functions on a sphere”, J. London Math. Soc., 29 (1954), 100–103 | DOI | MR | Zbl

[13] R. Schneider, “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl., 26 (1969), 381–384 | DOI | MR | Zbl

[14] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47:3 (1972), 237–254 | DOI | MR | Zbl

[15] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl

[16] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on spaces of constant curvature”, J. Analyse Math., 30:1 (1976), 113–130 | DOI | MR | Zbl

[17] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:1 (1980), 593–621 | DOI | MR | Zbl

[18] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl

[19] V. V. Volchkov, Vit. V. Volchkov, “New results in integral geometry”, Complex analysis and dynamical systems (Nahariya, Israel, 2003), v. II, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 417–432 | DOI | MR | Zbl

[20] C. A. Berenstein, R. Gay, A. Yger, “Inversion of the local Pompeiu transform”, J. Analyse Math., 54:1 (1990), 259–287 | DOI | MR | Zbl

[21] M. El Harchaoui, “Inversion de la transformation de Pompéiu locale dans les espaces hyperboliques réel et complexe: cas des deux boules”, J. Anal. Math., 67:1 (1995), 1–37 | DOI | MR | Zbl

[22] M. Berkani, M. El Harchaoui, R. Gay, “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternionique – cas des deux boules”, Complex Variables Theory Appl., 43:1 (2000), 29–57 | DOI | MR | Zbl

[23] Vit. V. Volchkov, N. P. Volchkova, “Inversion of the local Pompeiu transformation on a quaternionic hyperbolic space”, Dokl. Math., 64:1 (2001), 90–93 | MR | Zbl

[24] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, London, 2009 | MR | Zbl

[25] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | DOI | MR

[26] V. V. Volchkov, Vit. V. Volchkov, “Optimization problems related to the John uniqueness theorem”, St. Petersburg Math. J., 21:5 (2010), 705–729 | DOI | MR | Zbl

[27] V. V. Volchkov, Vit. V. Volchkov, “On a problem of Berenstein–Gay and its generalizations”, Izv. Math., 74:4 (2010), 691–721 | DOI | DOI | MR | Zbl

[28] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: Group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[29] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vols. I, II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | MR | Zbl | Zbl

[30] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976 | MR | Zbl

[31] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[32] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[33] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962 | MR | Zbl | Zbl

[34] L. Hörmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[35] V. V. Volchkov, “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279–1294 | DOI | DOI | MR | Zbl

[36] A. U. Klimyk, N. Ya. Vilenkin, “Representations of Lie groups and special functions”, Representation theory and noncommutative harmonic analysis. II, Encyclopaedia Math. Sci., 59, Springer-Verlag, Berlin, 1995, 137–259 | MR | MR | Zbl | Zbl

[37] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, v. I, Zinatne, Riga, 1974 | MR | Zbl