Sandwich theorems for Shioda--Inose structures
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 211-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a geometric construction of three infinite families of K3-surfaces which are sandwiched by Kummer surfaces within a Shioda–Inose structure. Explicit examples are also given.
Keywords: K3-surface, Shioda–Inose structure, elliptic fibration, isogeny.
@article{IM2_2013_77_1_a8,
     author = {M. Sch\"utt},
     title = {Sandwich theorems for {Shioda--Inose} structures},
     journal = {Izvestiya. Mathematics },
     pages = {211--222},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a8/}
}
TY  - JOUR
AU  - M. Schütt
TI  - Sandwich theorems for Shioda--Inose structures
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 211
EP  - 222
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a8/
LA  - en
ID  - IM2_2013_77_1_a8
ER  - 
%0 Journal Article
%A M. Schütt
%T Sandwich theorems for Shioda--Inose structures
%J Izvestiya. Mathematics 
%D 2013
%P 211-222
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a8/
%G en
%F IM2_2013_77_1_a8
M. Schütt. Sandwich theorems for Shioda--Inose structures. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 211-222. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a8/

[1] T. Shioda, “Kummer sandwich theorem of certain elliptic $K3$ surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 82:8 (2006), 137–140 | DOI | MR | Zbl

[2] S. Ma, “On $K3$ surfaces which dominate Kummer surfaces”, Proc. Amer. Math. Soc., 141:1 (2013), 131–137 | DOI | MR

[3] A. Kumar, “$K3$ surfaces associated with curves of genus two”, Int. Math. Res. Not. IMRN, 2008, no. 6, Art. ID rnm165 | DOI | MR | Zbl

[4] B. van Geemen, A. Sarti, “Nikulin involutions on $K3$ surfaces”, Math. Z., 255:4 (2007), 731–753 | DOI | MR | Zbl

[5] K. Koike, Elliptic $K3$ surfaces admitting a Shioda–Inose structure, arXiv: 1104.1470

[6] T. Shioda, H. Inose, “On singular $K3$ surfaces”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 119–136 | MR | Zbl

[7] D. R. Morrison, “On $K3$ surfaces with large Picard number”, Invent. Math., 75:1 (1984), 105–121 | DOI | MR | Zbl

[8] A. Clingher, C. F. Doran, “Note on a geometric isogeny of $K3$ surfaces”, Int. Math. Res. Not. IMRN, 2011, no. 16, 3657–3687 | MR | Zbl

[9] T. Shioda, “On the Mordell–Weil lattices”, Comment. Math. Univ. St. Paul., 39:2 (1990), 211–240 | MR | Zbl

[10] M. Schütt, T. Shioda, “Elliptic surfaces”, Algebraic geometry in East Asia (Seoul, Korea, 2008), Adv. Stud. Pure Math., 60, Math. Soc. Japan, Tokyo, 2010, 51–160 | MR | Zbl

[11] H. Inose, “Defining equations of singular $K3$ surfaces and a notion of isogeny”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 495–502 | MR | Zbl