Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_1_a8, author = {M. Sch\"utt}, title = {Sandwich theorems for {Shioda--Inose} structures}, journal = {Izvestiya. Mathematics }, pages = {211--222}, publisher = {mathdoc}, volume = {77}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a8/} }
M. Schütt. Sandwich theorems for Shioda--Inose structures. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 211-222. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a8/
[1] T. Shioda, “Kummer sandwich theorem of certain elliptic $K3$ surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 82:8 (2006), 137–140 | DOI | MR | Zbl
[2] S. Ma, “On $K3$ surfaces which dominate Kummer surfaces”, Proc. Amer. Math. Soc., 141:1 (2013), 131–137 | DOI | MR
[3] A. Kumar, “$K3$ surfaces associated with curves of genus two”, Int. Math. Res. Not. IMRN, 2008, no. 6, Art. ID rnm165 | DOI | MR | Zbl
[4] B. van Geemen, A. Sarti, “Nikulin involutions on $K3$ surfaces”, Math. Z., 255:4 (2007), 731–753 | DOI | MR | Zbl
[5] K. Koike, Elliptic $K3$ surfaces admitting a Shioda–Inose structure, arXiv: 1104.1470
[6] T. Shioda, H. Inose, “On singular $K3$ surfaces”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 119–136 | MR | Zbl
[7] D. R. Morrison, “On $K3$ surfaces with large Picard number”, Invent. Math., 75:1 (1984), 105–121 | DOI | MR | Zbl
[8] A. Clingher, C. F. Doran, “Note on a geometric isogeny of $K3$ surfaces”, Int. Math. Res. Not. IMRN, 2011, no. 16, 3657–3687 | MR | Zbl
[9] T. Shioda, “On the Mordell–Weil lattices”, Comment. Math. Univ. St. Paul., 39:2 (1990), 211–240 | MR | Zbl
[10] M. Schütt, T. Shioda, “Elliptic surfaces”, Algebraic geometry in East Asia (Seoul, Korea, 2008), Adv. Stud. Pure Math., 60, Math. Soc. Japan, Tokyo, 2010, 51–160 | MR | Zbl
[11] H. Inose, “Defining equations of singular $K3$ surfaces and a notion of isogeny”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 495–502 | MR | Zbl