Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 163-210
Voir la notice de l'article provenant de la source Math-Net.Ru
In the eigenvalue problem for a perturbed two-dimensional
oscillator, we suggest a method for constructing asymptotic solutions
near the boundaries of spectral clusters by means of a new integral
representation and study the issue of calculating the average values
of differential operators on the solutions near the boundaries of the
clusters.
Keywords:
operator averaging method, coherent transform, WKB-approximation,
turning point, spectral cluster.
@article{IM2_2013_77_1_a7,
author = {A. V. Pereskokov},
title = {Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters},
journal = {Izvestiya. Mathematics },
pages = {163--210},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/}
}
TY - JOUR AU - A. V. Pereskokov TI - Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters JO - Izvestiya. Mathematics PY - 2013 SP - 163 EP - 210 VL - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/ LA - en ID - IM2_2013_77_1_a7 ER -
%0 Journal Article %A A. V. Pereskokov %T Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters %J Izvestiya. Mathematics %D 2013 %P 163-210 %V 77 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/ %G en %F IM2_2013_77_1_a7
A. V. Pereskokov. Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 163-210. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/