Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 163-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the eigenvalue problem for a perturbed two-dimensional oscillator, we suggest a method for constructing asymptotic solutions near the boundaries of spectral clusters by means of a new integral representation and study the issue of calculating the average values of differential operators on the solutions near the boundaries of the clusters.
Keywords: operator averaging method, coherent transform, WKB-approximation, turning point, spectral cluster.
@article{IM2_2013_77_1_a7,
     author = {A. V. Pereskokov},
     title = {Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters},
     journal = {Izvestiya. Mathematics },
     pages = {163--210},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 163
EP  - 210
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/
LA  - en
ID  - IM2_2013_77_1_a7
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters
%J Izvestiya. Mathematics 
%D 2013
%P 163-210
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/
%G en
%F IM2_2013_77_1_a7
A. V. Pereskokov. Asymptotics of the spectrum and quantum averages of a~perturbed resonant oscillator near the boundaries of spectral clusters. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 163-210. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a7/

[1] V. M. Babič, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Springer Ser. Wave Phenomena, 4, Springer-Verlag, Berlin, 1991 | MR | MR | Zbl | Zbl

[2] B. P. Maslov, The complex WKB method for nonlinear equations, Progr. Phys., 16, Birkhaüser, Basel, 1994 | MR | MR | Zbl | Zbl

[3] S. Yu. Dobrokhotov, V. P. Maslov, “Applications of complex germ theory to equations with a small parameter”, J. Soviet Math., 5:4 (1976), 552–605 | DOI | MR | Zbl | Zbl

[4] M. V. Karasev, V. P. Maslov, “Asymptotic and geometric quantization”, Russian Math. Surveys, 39:6 (1984), 133–205 | DOI | MR | Zbl

[5] M. V. Karasev, “Birkhoff resonances and quantum ray method”, Proc. Intern. Seminar "Days of Diffraction–2004", St. Petersburg University and Steklov Math. Institute, St. Petersburg, 2004, 114–126

[6] M. Karasev, “Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances, I”, Quantum algebras and Poisson geometry in mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 1–18 ; “II”, Adv. Stud. Contemp. Math. (Kyungshang), 11:1 (2005), 33–56 ; “III”, Russ. J. Math. Phys., 13:2 (2006), 131–150 | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[7] M. Karasev, “Resonance gyrons and quantum geometry”, From geometry to quantum mechanics, Progr. Math., 252, Birkhaüser, Boston, MA, 2007, 253–275 | MR | Zbl

[8] A. Weinstein, “Asymptotics of eigenvalue clusters for the Laplacian plus a potential”, Duke Math. J., 44:4 (1977), 883–892 | DOI | MR | Zbl

[9] A. Weinstein, “Eigenvalues of the Laplacian plus a potential”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 803–805 | MR | Zbl

[10] M. V. Karasev, E. M. Novikova, “Representation of exact and semiclassical eigenfunctions via coherent states. Hydrogen atom in a magnetic field”, Theoret. and Math. Phys., 108:3 (1996), 1119–1159 | DOI | DOI | MR | Zbl

[11] M. V. Karasev, E. M. Novikova, “Algebra with quadratic commutation relations for an axially perturbed Coulomb—Dirac field”, Theoret. and Math. Phys., 141:3 (2004), 1698–1724 | DOI | DOI | MR | Zbl

[12] M. V. Karasev, E. M. Novikova, “Algebra with polynomial commutation relations for the Zeeman effect in the Coulomb–Dirac field”, Theoret. and Math. Phys., 142:1 (2005), 109–127 | DOI | DOI | MR | Zbl

[13] M. V. Karasev, E. M. Novikova, “Algebra with polynomial commutation relations for the Zeeman–Stark effect in the hydrogen atom”, Theoret. and Math. Phys., 142:3 (2005), 447–469 | DOI | DOI | MR | Zbl

[14] A. V. Pereskokov, “Asimptotika vblizi granits spektralnykh klasterov”, Mezhdunarod. konf., posvyaschennaya pamyati I. G. Petrovskogo, Tez. dokladov (23-e sovmestnoe zasedanie MMO i seminara im. I. G. Petrovskogo), Izd-vo MGU, M., 2011, 260–261

[15] J. Schwinger, On angular momentum, U. S. Atomic Energy Commission, NYO-3071, 1952; Quantum theory of angular momentum. A collection of reprints and original papers, Academic Press, New York, 1965, 229–279 | MR

[16] A. Perelomov, Generalized coherent states and their applications, Texts Monogr. Phys., Springer-Verlag, Berlin, 1986 | MR | MR | Zbl | Zbl

[17] M. V. Karasev, E. M. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent transform, quantization, and Poisson geometry, Amer. Math. Soc. Transl. Ser. 2, 187, Amer. Math. Soc., Providence, RI, 1998, 1–202 | MR | Zbl

[18] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950 | MR | Zbl

[19] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii Dialekt, SPb., 2002

[20] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. 2, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[21] P. A. M. Dirac, “Quantum electrodynamics”, Communications Dublin Inst. Advanced Studies. Ser. A., 1, 1943, 1–36 | MR | Zbl

[22] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[23] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York–London, 1974 | MR | MR | Zbl | Zbl

[24] M. A. Lavréntiev, B. V. Shabat, Métodos de la teoria de las funciones de una variable compleja, Mir, Moscow, 1991 | MR | MR | Zbl

[25] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York–London–Toronto, ON, 1980 | MR | MR | Zbl | Zbl

[26] J. A. Jenkins, Univalent functions and conformal mapping, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958 | MR | Zbl | Zbl

[27] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl

[28] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[29] V. P. Maslov, M. V. Fedoryuk, Semi-classical approximation in quantum mechanics, Math. Phys. Appl. Math., 7, Reidel, Dordrecht–Boston, 1981 | MR | MR | Zbl | Zbl

[30] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR | Zbl

[31] V. V. Belov, V. P. Maslov, “Quasiclassical trajectory-coherent states in quantum mechanics with gauge fields”, Soviet Phys. Dokl., 35:4 (1990), 330–332 | MR