On algebraic cycles on a~fibre product of families of K3-surfaces
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 143-162

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Hodge conjecture and the standard conjecture of Lefschetz type for fibre squares of smooth projective non-isotrivial families of $\mathrm K3$-surfaces over a smooth projective curve under the assumption that the rank of the lattice of transcendental cycles on a generic geometric fibre of the family is an odd prime. We prove the Hodge conjecture for a fibre product of two non-isotrivial families of $\mathrm K3$-surfaces (possibly with degenerations) under the condition that, for every point of the curve, at least one family has non-singular fibre over this point, and the rank of the lattice of transcendental cycles on a generic geometric fibre of one family is odd and not equal to the corresponding rank for the other.
Keywords: Hodge conjecture, $\mathrm K3$-surface.
Mots-clés : standard conjecture of Lefschetz type
@article{IM2_2013_77_1_a6,
     author = {O. V. Nikol'skaya},
     title = {On algebraic cycles on a~fibre product of families of {K3-surfaces}},
     journal = {Izvestiya. Mathematics },
     pages = {143--162},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a6/}
}
TY  - JOUR
AU  - O. V. Nikol'skaya
TI  - On algebraic cycles on a~fibre product of families of K3-surfaces
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 143
EP  - 162
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a6/
LA  - en
ID  - IM2_2013_77_1_a6
ER  - 
%0 Journal Article
%A O. V. Nikol'skaya
%T On algebraic cycles on a~fibre product of families of K3-surfaces
%J Izvestiya. Mathematics 
%D 2013
%P 143-162
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a6/
%G en
%F IM2_2013_77_1_a6
O. V. Nikol'skaya. On algebraic cycles on a~fibre product of families of K3-surfaces. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 143-162. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a6/