Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 87-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct asymptotics of eigenvalues and eigenvectors in the elasticity problem for an anisotropic body joined to a thin plate-baffle (of variable thickness $O(h)$, $h\ll 1$). The spectrum contains two series of eigenvalues with stable asymptotic behaviour. The first is formed by eigenvalues $O(h^2)$ corresponding to the transversal vibrations of the plate with rigidly clamped lateral surface, and the second contains eigenvalues $O(1)$ generated by the longitudinal vibrations of the plate as well as eigen-oscillations of the body without baffle. We verify the convergence theorem for the first series, estimate the errors for both series, and discuss the asymptotic correction terms and boundary layers. Similar but simpler results are obtained in the scalar problem.
Keywords: junction of a massive body and a thin plate, spectrum of an elastic body, asymptotics of eigenvalues and eigenvectors, dimension reduction.
@article{IM2_2013_77_1_a5,
     author = {S. A. Nazarov},
     title = {Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle},
     journal = {Izvestiya. Mathematics },
     pages = {87--142},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 87
EP  - 142
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a5/
LA  - en
ID  - IM2_2013_77_1_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle
%J Izvestiya. Mathematics 
%D 2013
%P 87-142
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a5/
%G en
%F IM2_2013_77_1_a5
S. A. Nazarov. Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 87-142. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a5/

[1] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[2] S. G. Lekhnitskiǐ, Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco, 1963 | MR | MR | Zbl | Zbl

[3] J. T. Beale, “Scattering frequencies of resonators”, Comm. Pure Appl. Math., 26:4 (1973), 549–563 | DOI | MR | Zbl

[4] A. A. Arsen'ev, “The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind”, U.S.S.R. Comput. Math. Math. Phys., 16:3 (1976), 171–177 | DOI | MR | Zbl | Zbl

[5] R. R. Gadyl'shin, “On the eigenvalues of a “dumb-bell with a thin handle””, Izv. Math., 69:2 (2005), 265–329 | DOI | DOI | MR | Zbl

[6] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985 | MR | MR | Zbl | Zbl

[7] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR

[8] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl

[9] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl | Zbl

[10] M. S. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl

[11] S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107 | DOI | DOI | MR | Zbl

[12] S. A. Nazarov, “The Korn inequalities which are asymptotically sharp for thin domains”, Vestnik St. Petersburg Univ. Math., 25:2 (1992), 18–22 | MR | Zbl | Zbl

[13] B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure”, J. Appl. Math. Mech., 37:5 (1973), 914–924 | DOI | MR | Zbl

[14] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | DOI | MR | Zbl

[15] S. A. Nazarov, “Elliptic boundary value problems in hybrid domains”, Funct. Anal. Appl., 38:4 (2004), 283–297 | DOI | DOI | MR | Zbl

[16] P. G. Ciarlet, S. Kesavan, “Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory”, Comput. Methods Appl. Mech. Engrg., 26:2 (1980), 145–172 | DOI | MR | Zbl

[17] P. G. Ciarlet, P. Destuynder, “A justification of the two-dimensional linear plate model”, J. Mécanique, 18 (1979), 315–344 | MR | Zbl

[18] P. G. Ciarlet, Mathematical elasticity, v. II, Stud. Math. Appl., 37, Theory of plates, North-Holland, Amsterdam, 1997 | MR | Zbl

[19] J. Sanchez-Hubert, E. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Masson, Paris, 1997 | Zbl

[20] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 ; “II”, 17:1 (1964), 35–92 | DOI | MR | Zbl | DOI | MR | Zbl

[21] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[22] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (New York), 92:6 (1998), 4338–4353 | MR | Zbl

[23] S. A. Nazarov, “On the asymptotics of the spectrum of a thin plate problem of elasticity”, Siberian Math. J., 41:4 (2000), 744–759 | DOI | MR | Zbl

[24] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | MR | Zbl | Zbl

[25] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[26] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. uravneniya, 6:10 (1970), 1831–1843 | MR | Zbl

[27] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, 1, Metsniereba, Tbilisi, 1973, 171–181 | MR | Zbl

[28] V. A. Kondrat'ev, “Singularities of a solution of Dirichlet's problem for a second-order elliptic equation in the neighborhood of an edge”, Differential Equations, 13:11 (1977), 1411–1415 | MR | Zbl | Zbl

[29] V. G. Mazya, B. A. Plamenevskii, “$L_p$-otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami”, Tr. MMO, 37, Izd-vo Mosk. un-ta, M., 1978, 49–93 | MR | Zbl

[30] V. A. Nikishkin, “Singularities of the solution to the Dirichlet problem for a second-order equation in a neighborhood of an edge”, Moscow Univ. Math. Bull., 34:2 (1979), 53–64 | MR | Zbl | Zbl

[31] V. G. Maz'ya, J. Rossmann, “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR | Zbl

[32] S. A. Nazarov, B. A. Plamenevskii, “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Tr. LMO, 1 (1990), 174–211 | MR

[33] S. A. Nazarov, B. A. Plamenevskii, “Elliptic problems with radiation conditions on edges of the boundary”, Russian Acad. Sci. Sb. Math., 77:1 (1994), 149–176 | DOI | MR | Zbl | Zbl

[34] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl

[35] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[36] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl

[37] M. van Dyke, Perturbation methods in fluid mechanics, Academic Press, New York–London, 1964 | MR | Zbl | Zbl

[38] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, Oper. Theory Adv. Appl., 111, Birkhäuser, Basel, 2000 | MR | Zbl

[39] V. G. Maz'ja, S. A. Nazarov, B. A. Plamenevskiǐ, “Asymptotics of solutions of the Dirichlet problem in a domain with a truncated thin tube”, Math. USSR-Sb., 44:2 (1983), 167–194 | DOI | MR | Zbl | Zbl

[40] S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions 1”, J. Math. Sci., 80:5 (1996), 1989–2034 | DOI | MR | Zbl

[41] S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. II”, J. Math. Sci., 97:3 (1999), 4085–4108 | DOI | MR | Zbl

[42] S. A. Nazarov, B. A. Plamenevskii, “Selfadjoint elliptic problems with radiation conditions on the edges of the boundary”, St. Petersburg Math. J., 4:3 (1993), 569–594 | MR | Zbl

[43] S. P. Timoshenko, J. N. Goodier, Theory of elasticity, McGraw-Hill, New York, 1970 | MR | Zbl | Zbl

[44] S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigenoscillations of a piezoelectric plate”, J. Math. Sci. (N. Y.), 114:5 (2003), 1657–1725 | DOI | MR | Zbl

[45] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70 (2005), 419–458 | DOI | MR | Zbl

[46] S. A. Nazarov, “Estimates for the accuracy of modelling boundary-value problems at the junction of domains with different limit dimensions”, Izv. Math., 68:6 (2004), 1179–1215 | DOI | DOI | MR | Zbl

[47] S. A. Nazarov, “Asymptotic analysis and modeling of the jointing of a massive body with thin rods”, J. Math. Sci. (N. Y.), 127:5 (2005), 2192–2262 | DOI | MR | Zbl

[48] F. A. Berezin, L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Soviet Math. Dokl., 2 (1961), 372–375 | MR | Zbl

[49] B. S. Pavlov, “The theory of extensions and explicitly-solvable models”, Russian Math. Surveys, 42:6 (1987), 127–168 | DOI | MR | Zbl | Zbl

[50] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo LGU, L., 1975

[51] S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions”, Amer. Math. Soc. Transl. Ser. 2, 193 (1999), 77–125 | MR | Zbl

[52] I. V. Kamotskii, S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators”, Amer. Math. Soc. Transl. Ser. 2, 199 (2000), 127–181 | MR | Zbl

[53] J. L. Lions, “Some more remarks on boundary value problems and junctions”, Asymptotic methods for elastic structures (Lisbon, 1993), Walter de Gruyter, Berlin–New York, 1995, 103–118 | MR | Zbl