Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_1_a5, author = {S. A. Nazarov}, title = {Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle}, journal = {Izvestiya. Mathematics }, pages = {87--142}, publisher = {mathdoc}, volume = {77}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a5/} }
S. A. Nazarov. Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 87-142. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a5/
[1] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[2] S. G. Lekhnitskiǐ, Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco, 1963 | MR | MR | Zbl | Zbl
[3] J. T. Beale, “Scattering frequencies of resonators”, Comm. Pure Appl. Math., 26:4 (1973), 549–563 | DOI | MR | Zbl
[4] A. A. Arsen'ev, “The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind”, U.S.S.R. Comput. Math. Math. Phys., 16:3 (1976), 171–177 | DOI | MR | Zbl | Zbl
[5] R. R. Gadyl'shin, “On the eigenvalues of a “dumb-bell with a thin handle””, Izv. Math., 69:2 (2005), 265–329 | DOI | DOI | MR | Zbl
[6] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985 | MR | MR | Zbl | Zbl
[7] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR
[8] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl
[9] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl | Zbl
[10] M. S. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl
[11] S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107 | DOI | DOI | MR | Zbl
[12] S. A. Nazarov, “The Korn inequalities which are asymptotically sharp for thin domains”, Vestnik St. Petersburg Univ. Math., 25:2 (1992), 18–22 | MR | Zbl | Zbl
[13] B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure”, J. Appl. Math. Mech., 37:5 (1973), 914–924 | DOI | MR | Zbl
[14] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | DOI | MR | Zbl
[15] S. A. Nazarov, “Elliptic boundary value problems in hybrid domains”, Funct. Anal. Appl., 38:4 (2004), 283–297 | DOI | DOI | MR | Zbl
[16] P. G. Ciarlet, S. Kesavan, “Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory”, Comput. Methods Appl. Mech. Engrg., 26:2 (1980), 145–172 | DOI | MR | Zbl
[17] P. G. Ciarlet, P. Destuynder, “A justification of the two-dimensional linear plate model”, J. Mécanique, 18 (1979), 315–344 | MR | Zbl
[18] P. G. Ciarlet, Mathematical elasticity, v. II, Stud. Math. Appl., 37, Theory of plates, North-Holland, Amsterdam, 1997 | MR | Zbl
[19] J. Sanchez-Hubert, E. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques, Masson, Paris, 1997 | Zbl
[20] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 ; “II”, 17:1 (1964), 35–92 | DOI | MR | Zbl | DOI | MR | Zbl
[21] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl
[22] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci. (New York), 92:6 (1998), 4338–4353 | MR | Zbl
[23] S. A. Nazarov, “On the asymptotics of the spectrum of a thin plate problem of elasticity”, Siberian Math. J., 41:4 (2000), 744–759 | DOI | MR | Zbl
[24] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | MR | Zbl | Zbl
[25] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[26] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. uravneniya, 6:10 (1970), 1831–1843 | MR | Zbl
[27] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, 1, Metsniereba, Tbilisi, 1973, 171–181 | MR | Zbl
[28] V. A. Kondrat'ev, “Singularities of a solution of Dirichlet's problem for a second-order elliptic equation in the neighborhood of an edge”, Differential Equations, 13:11 (1977), 1411–1415 | MR | Zbl | Zbl
[29] V. G. Mazya, B. A. Plamenevskii, “$L_p$-otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami”, Tr. MMO, 37, Izd-vo Mosk. un-ta, M., 1978, 49–93 | MR | Zbl
[30] V. A. Nikishkin, “Singularities of the solution to the Dirichlet problem for a second-order equation in a neighborhood of an edge”, Moscow Univ. Math. Bull., 34:2 (1979), 53–64 | MR | Zbl | Zbl
[31] V. G. Maz'ya, J. Rossmann, “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR | Zbl
[32] S. A. Nazarov, B. A. Plamenevskii, “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Tr. LMO, 1 (1990), 174–211 | MR
[33] S. A. Nazarov, B. A. Plamenevskii, “Elliptic problems with radiation conditions on edges of the boundary”, Russian Acad. Sci. Sb. Math., 77:1 (1994), 149–176 | DOI | MR | Zbl | Zbl
[34] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl
[35] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl
[36] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl
[37] M. van Dyke, Perturbation methods in fluid mechanics, Academic Press, New York–London, 1964 | MR | Zbl | Zbl
[38] V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, Oper. Theory Adv. Appl., 111, Birkhäuser, Basel, 2000 | MR | Zbl
[39] V. G. Maz'ja, S. A. Nazarov, B. A. Plamenevskiǐ, “Asymptotics of solutions of the Dirichlet problem in a domain with a truncated thin tube”, Math. USSR-Sb., 44:2 (1983), 167–194 | DOI | MR | Zbl | Zbl
[40] S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions 1”, J. Math. Sci., 80:5 (1996), 1989–2034 | DOI | MR | Zbl
[41] S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. II”, J. Math. Sci., 97:3 (1999), 4085–4108 | DOI | MR | Zbl
[42] S. A. Nazarov, B. A. Plamenevskii, “Selfadjoint elliptic problems with radiation conditions on the edges of the boundary”, St. Petersburg Math. J., 4:3 (1993), 569–594 | MR | Zbl
[43] S. P. Timoshenko, J. N. Goodier, Theory of elasticity, McGraw-Hill, New York, 1970 | MR | Zbl | Zbl
[44] S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigenoscillations of a piezoelectric plate”, J. Math. Sci. (N. Y.), 114:5 (2003), 1657–1725 | DOI | MR | Zbl
[45] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70 (2005), 419–458 | DOI | MR | Zbl
[46] S. A. Nazarov, “Estimates for the accuracy of modelling boundary-value problems at the junction of domains with different limit dimensions”, Izv. Math., 68:6 (2004), 1179–1215 | DOI | DOI | MR | Zbl
[47] S. A. Nazarov, “Asymptotic analysis and modeling of the jointing of a massive body with thin rods”, J. Math. Sci. (N. Y.), 127:5 (2005), 2192–2262 | DOI | MR | Zbl
[48] F. A. Berezin, L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Soviet Math. Dokl., 2 (1961), 372–375 | MR | Zbl
[49] B. S. Pavlov, “The theory of extensions and explicitly-solvable models”, Russian Math. Surveys, 42:6 (1987), 127–168 | DOI | MR | Zbl | Zbl
[50] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo LGU, L., 1975
[51] S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions”, Amer. Math. Soc. Transl. Ser. 2, 193 (1999), 77–125 | MR | Zbl
[52] I. V. Kamotskii, S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators”, Amer. Math. Soc. Transl. Ser. 2, 199 (2000), 127–181 | MR | Zbl
[53] J. L. Lions, “Some more remarks on boundary value problems and junctions”, Asymptotic methods for elastic structures (Lisbon, 1993), Walter de Gruyter, Berlin–New York, 1995, 103–118 | MR | Zbl