Real $M$-triquadrics
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 30-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-singular intersections of three real quadrics. For brevity, such varieties are called real triquadrics. We prove criteria for the maximality of triquadrics. These criteria are based on a connection between triquadrics and plane curves.
Keywords: $M$-varieties, spectral curve, spectral bundle, index function
Mots-clés : triquadric, index orientation.
@article{IM2_2013_77_1_a3,
     author = {V. A. Krasnov},
     title = {Real $M$-triquadrics},
     journal = {Izvestiya. Mathematics },
     pages = {30--43},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real $M$-triquadrics
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 30
EP  - 43
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/
LA  - en
ID  - IM2_2013_77_1_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real $M$-triquadrics
%J Izvestiya. Mathematics 
%D 2013
%P 30-43
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/
%G en
%F IM2_2013_77_1_a3
V. A. Krasnov. Real $M$-triquadrics. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 30-43. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/