Real $M$-triquadrics
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 30-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-singular intersections of three real quadrics. For brevity, such varieties are called real triquadrics. We prove criteria for the maximality of triquadrics. These criteria are based on a connection between triquadrics and plane curves.
Keywords: $M$-varieties, spectral curve, spectral bundle, index function
Mots-clés : triquadric, index orientation.
@article{IM2_2013_77_1_a3,
     author = {V. A. Krasnov},
     title = {Real $M$-triquadrics},
     journal = {Izvestiya. Mathematics },
     pages = {30--43},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real $M$-triquadrics
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 30
EP  - 43
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/
LA  - en
ID  - IM2_2013_77_1_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real $M$-triquadrics
%J Izvestiya. Mathematics 
%D 2013
%P 30-43
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/
%G en
%F IM2_2013_77_1_a3
V. A. Krasnov. Real $M$-triquadrics. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 30-43. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a3/

[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077v2

[2] V. A. Krasnov, “Maximal intersections of three real quadrics”, Izv. Math., 75:3 (2011), 569–587 | DOI | DOI | MR | Zbl

[3] V. V. Nikulin, “On the connected components of moduli of real polarized K3-surfaces”, Izv. Math., 72:1 (2008), 91–111 | DOI | DOI | MR | Zbl

[4] S. Yu. Orevkov, “Classification of flexible $M$-curves of degree 8 up to isotopy”, Geom. Funct. Anal., 12:4 (2002), 723–755 | DOI | MR | Zbl

[5] A. C. Dixon, “Note on the reduction of a ternary quintic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl

[6] M. F. Atiyah, $K$-theory, Benjamin, New York–Amsterdam, 1967 | MR | MR | Zbl | Zbl

[7] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[8] V. M. Kharlamov, “Additional congruences for the Euler characteristic of real algebraic manifolds of even dimensions”, Funct. Anal. Appl., 9:2 (1975), 134–141 | DOI | MR | Zbl

[9] V. A. Krasnov, “Real algebraic GM-varieties”, Izv. Math., 62:3 (1998), 465–491 | DOI | DOI | MR | Zbl

[10] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl

[11] V. A. Krasnov, “Cohomology of real three-dimensional triquadrics”, Izv. Math., 76:1 (2012), 113–138 | DOI | DOI | MR | Zbl