On the algebraic independence of functions of a~certain class
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 20-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Ramanujan functions and a family of functions whose properties are close to those of Ramanujan functions. We prove the algebraic independence of these functions over the field of rational functions with complex coefficients. We also prove a bound for the multiplicity of the zeros of polynomials in these functions.
Keywords: algebraic independence, Ramanujan functions, bound for the multiplicity of the zeros of polynomials.
@article{IM2_2013_77_1_a2,
     author = {P. Yu. Kozlov},
     title = {On the algebraic independence of functions of a~certain class},
     journal = {Izvestiya. Mathematics },
     pages = {20--29},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a2/}
}
TY  - JOUR
AU  - P. Yu. Kozlov
TI  - On the algebraic independence of functions of a~certain class
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 20
EP  - 29
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a2/
LA  - en
ID  - IM2_2013_77_1_a2
ER  - 
%0 Journal Article
%A P. Yu. Kozlov
%T On the algebraic independence of functions of a~certain class
%J Izvestiya. Mathematics 
%D 2013
%P 20-29
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a2/
%G en
%F IM2_2013_77_1_a2
P. Yu. Kozlov. On the algebraic independence of functions of a~certain class. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a2/

[1] S. Ramanujan, “On Certain arithmetical functions”, Trans. Cambridge Philos. Soc., 22:9 (1916), 159–184 | MR

[2] E. Grosswald, “Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1970, 9–13 | MR | Zbl

[3] A. B. Shidlovskii, Transcendental numbers, de Gruyter Stud. Math., 12, de Gruyter, Berlin, 1989 | MR | MR | Zbl | Zbl

[4] Yu. V. Nesterenko, “On the algebraic independence of the values of $E$-functions satisfying nonhomogeneous linear differential equations”, Math. Notes, 5:5 (1969), 352–358 | DOI | MR | Zbl

[5] Yu. V. Nesterenko, “Modular functions and transcendence questions”, Sb. Math., 187:9 (1996), 1319–1348 | DOI | DOI | MR | Zbl

[6] S. Lang, Introduction to modular forms, Springer-Verlag, Berlin–New York, 1976 | MR | MR | Zbl | Zbl

[7] A. P. Dolgalev, “Estimates for the orders of zeros of polynomials in some analytic functions”, Math. Notes, 84:2 (2008), 184–196 | DOI | DOI | MR | Zbl

[8] F. Pellarin, “La structure differentielle de l'anneau des formes quasi-modulaires pour $\mathrm{SL}_2(\mathbb{Z})$”, J. Théor. Nombres Bordeaux, 18:1 (2006), 241–264 | DOI | MR | Zbl