Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2013_77_1_a2, author = {P. Yu. Kozlov}, title = {On the algebraic independence of functions of a~certain class}, journal = {Izvestiya. Mathematics }, pages = {20--29}, publisher = {mathdoc}, volume = {77}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a2/} }
P. Yu. Kozlov. On the algebraic independence of functions of a~certain class. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 20-29. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a2/
[1] S. Ramanujan, “On Certain arithmetical functions”, Trans. Cambridge Philos. Soc., 22:9 (1916), 159–184 | MR
[2] E. Grosswald, “Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1970, 9–13 | MR | Zbl
[3] A. B. Shidlovskii, Transcendental numbers, de Gruyter Stud. Math., 12, de Gruyter, Berlin, 1989 | MR | MR | Zbl | Zbl
[4] Yu. V. Nesterenko, “On the algebraic independence of the values of $E$-functions satisfying nonhomogeneous linear differential equations”, Math. Notes, 5:5 (1969), 352–358 | DOI | MR | Zbl
[5] Yu. V. Nesterenko, “Modular functions and transcendence questions”, Sb. Math., 187:9 (1996), 1319–1348 | DOI | DOI | MR | Zbl
[6] S. Lang, Introduction to modular forms, Springer-Verlag, Berlin–New York, 1976 | MR | MR | Zbl | Zbl
[7] A. P. Dolgalev, “Estimates for the orders of zeros of polynomials in some analytic functions”, Math. Notes, 84:2 (2008), 184–196 | DOI | DOI | MR | Zbl
[8] F. Pellarin, “La structure differentielle de l'anneau des formes quasi-modulaires pour $\mathrm{SL}_2(\mathbb{Z})$”, J. Théor. Nombres Bordeaux, 18:1 (2006), 241–264 | DOI | MR | Zbl