On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects
Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for the continuous invertibility and the Fredholm property of operators generated by a family of evolution operators, with boundary conditions given by a linear relation and impulse effects also given by a linear relation.
Keywords: continuous invertibility, Fredholm property, family of evolution operators, linear relation, impulse effect.
@article{IM2_2013_77_1_a1,
     author = {V. B. Didenko},
     title = {On the continuous invertibility and the {Fredholm} property of differential operators with multi-valued impulse effects},
     journal = {Izvestiya. Mathematics },
     pages = {3--19},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a1/}
}
TY  - JOUR
AU  - V. B. Didenko
TI  - On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects
JO  - Izvestiya. Mathematics 
PY  - 2013
SP  - 3
EP  - 19
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a1/
LA  - en
ID  - IM2_2013_77_1_a1
ER  - 
%0 Journal Article
%A V. B. Didenko
%T On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects
%J Izvestiya. Mathematics 
%D 2013
%P 3-19
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a1/
%G en
%F IM2_2013_77_1_a1
V. B. Didenko. On the continuous invertibility and the Fredholm property of differential operators with multi-valued impulse effects. Izvestiya. Mathematics , Tome 77 (2013) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/IM2_2013_77_1_a1/

[1] P. S. Sethi, G. L. Thompson, Optimal control theory. Applications to management science and economics, Kluwer Acad. Publ., Boston, MA, 2000 | MR | Zbl

[2] T. Yang, Impulsive control theory, Lecture Notes in Control and Inform. Sci., 272, Springer-Verlag, Berlin, 2001 | MR | Zbl

[3] A. D. Myškis, A. M. Samoǐlenko, “Systems with shocks at prescribed instants of time”, Math. USSR-Sb., 3:2 (1967), 187–193 | DOI | MR | Zbl | Zbl

[4] A. M. Samoilenko, N. A. Perestyuk, Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shkola, Kiev, 1987

[5] D. D. Baǐnov, S. I. Kostadinov, A. D. Myshkis, “Bounded and periodic solutions of differential equations with impulse effect in a Banach space”, Differential Integral Equations, 1:2 (1988), 223–230 | MR | Zbl

[6] J.-P. Aubin, “Optimal impulse control problems and quasi-variational inequalities thirty years later: a viability approach”, Optimal control and partial differential equations (Paris, France, 2000), IOS Press, Amsterdam, 2001, 311–324 | Zbl

[7] P. Saint-Pierre, “Hybrid kernels and capture basins for impulse constrained systems”, Hybrid systems: computation and control (Stanford, CA, USA, 2002), Springer-Verlag, Berlin–Heidelberg, 2002, 378–392 | Zbl

[8] Ju. L. Dalec'kiǐ, M. G. Kreǐn, Stability of solutions of differential equations in Banach space, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl | Zbl

[9] R. Cross, Multivalued linear operators, Monogr. Textbooks Pure Appl. Math., 213, M. Dekker, New York, 1998 | MR | Zbl

[10] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl

[11] A. G. Baskakov, “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N. Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl

[12] S. S. Kutateladze, Fundamentals of functional analysis, Kluwer Texts Math. Sci., 12, Kluwer Acad. Publ., Dordrecht, 1995 | MR | MR | Zbl | Zbl

[13] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[14] V. B. Didenko, “On the spectral properties of differential operators with unbounded operator coefficients determined by a linear relation”, Math. Notes, 89:2 (2011), 224–237 | DOI | DOI | MR | Zbl

[15] M. S. Bichegkuev, “On a weakened Cauchy problem for a linear differential inclusion”, Math. Notes, 79:4 (2006), 449–453 | DOI | DOI | MR | Zbl

[16] M. S. Bichegkuev, “Conditions for solubility of difference inclusions”, Izv. Math., 72:4 (2008), 647–658 | DOI | DOI | MR | Zbl

[17] M. S. Bichegkuev, “Solvability conditions for the difference equations with an initial condition in a subspace”, Siberian Math. J., 51:4 (2010), 595–609 | DOI | MR | Zbl