Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1190-1217.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out a resolvent analysis of the lattice Laplacian (the generator of a simple random walk on the $d$-dimensional integer lattice) under large deviations of the random walk. This enables us to obtain asymptotic representations for the transition probability of the simple random walk and the corresponding Green function. We explicitly describe the asymptotic behaviour of the transition probability as the spatial and temporal variables jointly tend to infinity. The resulting Cramér-type expansion for the transition probability is ‘universal’ in this sense. In particular, it enables us to construct a scale for measuring the transition probability as a function of the time $t$ assuming that the spatial variable is of order $t^{\alpha}$ for various values of $\alpha\geqslant0$. We prove limit theorems on the asymptotic behaviour of the Green function of the transition probabilities under large deviations of the random walk.
Keywords: branching random walk, difference Laplacian, asymptotics of the Green function, limit theorems.
Mots-clés : large deviations, spatio-temporal scale
@article{IM2_2012_76_6_a7,
     author = {S. A. Molchanov and E. B. Yarovaya},
     title = {Limit theorems for the {Green} function of the lattice {Laplacian} under large deviations of the random walk},
     journal = {Izvestiya. Mathematics },
     pages = {1190--1217},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/}
}
TY  - JOUR
AU  - S. A. Molchanov
AU  - E. B. Yarovaya
TI  - Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1190
EP  - 1217
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/
LA  - en
ID  - IM2_2012_76_6_a7
ER  - 
%0 Journal Article
%A S. A. Molchanov
%A E. B. Yarovaya
%T Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk
%J Izvestiya. Mathematics 
%D 2012
%P 1190-1217
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/
%G en
%F IM2_2012_76_6_a7
S. A. Molchanov; E. B. Yarovaya. Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1190-1217. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/

[1] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. I. Intermittency and related topics”, Comm. Math. Phys., 132:3 (1990), 613–655 | DOI | MR | Zbl

[2] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Related Fields, 111:1 (1998), 7–55 | DOI | MR | Zbl

[3] R. Carmona, L. Koralov, S. Molchanov, “Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem”, Random Oper. Stochastic Equations, 9:1 (2001), 77–86 | DOI | MR | Zbl

[4] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekh.-mat. Mosk. un-ta, M., 2007

[5] E. B. Yarovaya, “Criteria of exponential growth for the numbers of particles in models of branching random walks”, Theory Probab. Appl., 55:4 (2011), 661–682 | DOI | MR | Zbl

[6] M. Cranston, S. Molchanov, “On phase transitions and limit theorems for homopolymers”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 97–112 | MR | Zbl

[7] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI

[8] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl

[9] E. B. Dynkin, A. A. Yushkevich, Teoremy i zadachi o protsessakh Markova, Nauka, M., 1967 | MR | Zbl

[10] P. Kuchment, A. Raich, Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case, arXiv: 1110.0225

[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[12] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[13] F. Spitzer, Principles of random walks, Springer-Verlag, New York–Heidelberg, 1976 | MR | Zbl | Zbl

[14] W. Feller, An introduction to probability theory and its applications, v. 2, Wiley, New York, 1971 | MR | MR | Zbl | Zbl