Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_6_a7, author = {S. A. Molchanov and E. B. Yarovaya}, title = {Limit theorems for the {Green} function of the lattice {Laplacian} under large deviations of the random walk}, journal = {Izvestiya. Mathematics }, pages = {1190--1217}, publisher = {mathdoc}, volume = {76}, number = {6}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/} }
TY - JOUR AU - S. A. Molchanov AU - E. B. Yarovaya TI - Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk JO - Izvestiya. Mathematics PY - 2012 SP - 1190 EP - 1217 VL - 76 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/ LA - en ID - IM2_2012_76_6_a7 ER -
%0 Journal Article %A S. A. Molchanov %A E. B. Yarovaya %T Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk %J Izvestiya. Mathematics %D 2012 %P 1190-1217 %V 76 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/ %G en %F IM2_2012_76_6_a7
S. A. Molchanov; E. B. Yarovaya. Limit theorems for the Green function of the lattice Laplacian under large deviations of the random walk. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1190-1217. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a7/
[1] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. I. Intermittency and related topics”, Comm. Math. Phys., 132:3 (1990), 613–655 | DOI | MR | Zbl
[2] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Related Fields, 111:1 (1998), 7–55 | DOI | MR | Zbl
[3] R. Carmona, L. Koralov, S. Molchanov, “Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem”, Random Oper. Stochastic Equations, 9:1 (2001), 77–86 | DOI | MR | Zbl
[4] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekh.-mat. Mosk. un-ta, M., 2007
[5] E. B. Yarovaya, “Criteria of exponential growth for the numbers of particles in models of branching random walks”, Theory Probab. Appl., 55:4 (2011), 661–682 | DOI | MR | Zbl
[6] M. Cranston, S. Molchanov, “On phase transitions and limit theorems for homopolymers”, Probability and mathematical physics, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007, 97–112 | MR | Zbl
[7] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI
[8] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl
[9] E. B. Dynkin, A. A. Yushkevich, Teoremy i zadachi o protsessakh Markova, Nauka, M., 1967 | MR | Zbl
[10] P. Kuchment, A. Raich, Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case, arXiv: 1110.0225
[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl
[12] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl
[13] F. Spitzer, Principles of random walks, Springer-Verlag, New York–Heidelberg, 1976 | MR | Zbl | Zbl
[14] W. Feller, An introduction to probability theory and its applications, v. 2, Wiley, New York, 1971 | MR | MR | Zbl | Zbl