Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1175-1189.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the Riesz basis property in $L_2[0,1]$ for the family of eigenfunctions and adjoint functions of an integral operator whose kernel is discontinuous on the diagonals $t=x$ and $t=1-x$.
Keywords: Riesz basis, resolvent, characteristic number, eigenfunction, involution.
@article{IM2_2012_76_6_a6,
     author = {V. P. Kurdyumov and A. P. Khromov},
     title = {Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals},
     journal = {Izvestiya. Mathematics },
     pages = {1175--1189},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a6/}
}
TY  - JOUR
AU  - V. P. Kurdyumov
AU  - A. P. Khromov
TI  - Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1175
EP  - 1189
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a6/
LA  - en
ID  - IM2_2012_76_6_a6
ER  - 
%0 Journal Article
%A V. P. Kurdyumov
%A A. P. Khromov
%T Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals
%J Izvestiya. Mathematics 
%D 2012
%P 1175-1189
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a6/
%G en
%F IM2_2012_76_6_a6
V. P. Kurdyumov; A. P. Khromov. Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1175-1189. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a6/

[1] A. P. Khromov, “Inversion of integral operators with kernels discontinuous on the diagonal”, Math. Notes, 64:6 (1998), 804–813 | DOI | MR | Zbl

[2] V. V. Kornev, A. P. Khromov, “Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals”, Sb. Math., 192:10 (2001), 1451–1469 | DOI | MR | Zbl

[3] A. P. Khromov, “Integral operators with kernels that are discontinuous on broken lines”, Sb. Math., 197:11 (2006), 1669–1696 | DOI | MR | Zbl

[4] G. M. Keselman, “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl

[5] V. P. Mikhajlov, “Riesz bases in $L_2[0,1]$”, Soviet Math. Dokl., 3 (1962), 851–855 | MR | Zbl

[6] V. A. Il'in, “Necessary and sufficient conditions for the basis property in $L_p$, and equiconvergence with a trigonometric series, of spectral decompositions and expansions in systems of exponential functions”, Soviet Math. Dokl., 28:3 (1983), 701–705 | MR | Zbl

[7] V. A. Il'in, “Necessary and sufficient conditions for the basis property in $L_p$, and equiconvergence with a trigonometric series, of spectral decompositions and expansions in systems of exponential functions. I”, Differential Equations, 16:5 (1980), 479–496 | MR | MR | Zbl | Zbl | Zbl

[8] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 190–229 | MR | Zbl

[9] V. P. Kurdyumov, A. P. Khromov, “Riesz bases of eigenfunctions of an integral operator with a variable limit of integration”, Math. Notes, 76:1–2 (2004), 90–102 | DOI | MR | Zbl

[10] A. A. Andreev, “Analogs of classical boundary value problems for a second-order differential equation with deviating argument”, Differ. Equ., 40:8 (2004), 1192–1194 | DOI | MR | Zbl

[11] Ch. G. Dankl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[12] S. S. Platonov, “Razlozhenie po sobstvennym funktsiyam dlya nekotorykh funktsionalno-differentsialnykh operatorov”, Tr. Petrozavodskogo gos. un-ta. Ser. matem., 11 (2004), 14–33 | MR | Zbl

[13] A. P. Hromov, “Equiconvergence theorems for integrodifferential and integral operators”, Math. USSR-Sb., 42:3 (1982), 331–355 | DOI | MR | Zbl

[14] V. V. Kornev, A. P. Khromov, “Ob absolyutnoi skhodimosti razlozhenii po sobstvennym funktsiyam differentsialnykh operatorov”, Integralnye preobrazovaniya i spetsialnye funktsii. Informats. byulleten, 5:1 (2005), 13–23

[15] V. V. Kornev, A. P. Khromov, “Absolute convergence of expansions in eigen- and adjoint functions of an integral operator with a variable limit of integration”, Izv. Math., 69:4 (2005), 703–717 | DOI | MR | Zbl

[16] V. V. Kornev, A. P. Khromov, “O ravnoskhodimosti spektralnykh razlozhenii samosopryazhennykh integralnykh operatorov”, Sovremennye metody v teorii kraevykh zadach: Tr. Voronezh. vesennei matem. shkoly “Pontryaginskie chteniya XI”, ch. II, Voronezh. gos. un-t, Voronezh, 2000, 73–81

[17] R. E. Langer, “On the theory of integral equations with discontinuous kernels”, Trans. Amer. Math. Soc., 28:4 (1926), 585–639 | DOI | MR | Zbl

[18] M. Sh. Burlutskaya, A. P. Khromov, “Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution”, Comput. Math. Math. Phys., 51:12 (2011), 2102–2114 | DOI | MR | Zbl

[19] A. P. Khromov, “Ob odnom svoistve smeshannoi zadachi s involyutsiei”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy 10-i mezhdunar. Kazan. letnei nauch. shk.-konf., Tr. mat. tsentra im. N. I. Lobachevskogo, 43, Kazan, 2011, 364–365

[20] A. P. Khromov, “Teoremy ravnoskhodimosti dlya integralnogo operatora s peremennym predelom integrirovaniya”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza: sb. statei, Izd-vo AFTs, M., 1999, 255–266

[21] M. Sh. Burlutskaya, “Teorema ravnoskhodimosti dlya integralnogo operatora na prosteishem grafe s tsiklom”, Izv. Sarat. un-ta, ser. Matem. Mekh. Inf., 8:4 (2008), 8–13