Splitting fields of finite groups
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1163-1174.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a simpler proof of the Goldschmidt–Isaacs theorem in the case $p>2$ and find new sufficient conditions for the applicability of the theorem in the case $p=2$. We thus obtain a theorem giving an estimate for the Schur index of an arbitrary irreducible complex representation of a finite group over the field of rational numbers. The proof of this theorem shows that in practical applications there is no need to verify sufficient conditions for the applicability of the Goldschmidt–Isaacs theorem in the case $p=2$: they can automatically be assumed to hold. We also prove a theorem on the connection between the realizability of any complex representation over the field of rational numbers of a finite group of odd order of a special type and the possibility of constructing regular polygons with straightedge and compasses.
Keywords: finite group, representation of a finite group, Schur index.
@article{IM2_2012_76_6_a5,
     author = {D. D. Kiselev},
     title = {Splitting fields of finite groups},
     journal = {Izvestiya. Mathematics },
     pages = {1163--1174},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a5/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Splitting fields of finite groups
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1163
EP  - 1174
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a5/
LA  - en
ID  - IM2_2012_76_6_a5
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Splitting fields of finite groups
%J Izvestiya. Mathematics 
%D 2012
%P 1163-1174
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a5/
%G en
%F IM2_2012_76_6_a5
D. D. Kiselev. Splitting fields of finite groups. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1163-1174. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a5/

[1] I. Reiner, Maximal orders, London Math. Soc. Monogr. (N.S.), 28, Oxford Univ. Press, Oxford, 2003 | MR | Zbl

[2] S. D. Berman, “Predstavleniya konechnykh grupp nad proizvolnym polem i nad koltsami tselykh chisel”, Izv. AN SSSR. Ser. matem., 30:1 (1966), 69–132 | MR | Zbl

[3] D. M. Goldschmidt, I. M. Isaacs, “Schur indices in finite groups”, J. Algebra, 33 (1975), 191–199 | DOI | MR | Zbl

[4] Ch. W. Curtis, I. Reiner, Methods of representation theory, v. 2, Pure Appl. Math. (N. Y.), Wiley, New York, 1987 | MR | Zbl

[5] J. W. S. Cassels, A. Fröhlich, Algebraic number theory, Academic Press, London, 1967 | MR | MR | Zbl

[6] Ch. W. Curtis, I. Reiner, Methods of representation theory, v. 1, Wiley, New York, 1981 | MR | Zbl