Dissipative effects in a~linear Lagrangian system with infinitely many degrees of freedom
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1116-1149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of potential interaction between a finite-dimensional linear Lagrangian system and an infinite-dimensional one (a system of linear oscillators and a thermostat). We study the final dynamics of the system. Under natural assumptions, this dynamics turns out to be very simple and admits an explicit description because the thermostat produces an effective dissipation despite the energy conservation and the Lagrangian nature of the system. We use the methods of [1], where the final dynamics of the finite-dimensional subsystem is studied in the case when it has one degree of freedom and a linear potential or (under additional assumptions) polynomial potential. We consider the case of finite-dimensional subsystems with arbitrarily many degrees of freedom and a linear potential and study the final dynamics of the system of oscillators and the thermostat. The necessary assertions from [1] are given with proofs adapted to the present situation.
Keywords: Lagrangian systems, Hamiltonian systems, systems with infinitely many degrees of freedom, final dynamics.
@article{IM2_2012_76_6_a3,
     author = {A. V. Dymov},
     title = {Dissipative effects in a~linear {Lagrangian} system with infinitely many degrees of freedom},
     journal = {Izvestiya. Mathematics },
     pages = {1116--1149},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a3/}
}
TY  - JOUR
AU  - A. V. Dymov
TI  - Dissipative effects in a~linear Lagrangian system with infinitely many degrees of freedom
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1116
EP  - 1149
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a3/
LA  - en
ID  - IM2_2012_76_6_a3
ER  - 
%0 Journal Article
%A A. V. Dymov
%T Dissipative effects in a~linear Lagrangian system with infinitely many degrees of freedom
%J Izvestiya. Mathematics 
%D 2012
%P 1116-1149
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a3/
%G en
%F IM2_2012_76_6_a3
A. V. Dymov. Dissipative effects in a~linear Lagrangian system with infinitely many degrees of freedom. Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1116-1149. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a3/

[1] D. Treschev, “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712 | DOI | MR | Zbl

[2] N. N. Bogolyubov, “Elementarnyi primer ustanovleniya statisticheskogo ravnovesiya v sisteme, svyazannoi s termostatom”, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, AN USSR, Lvov, 1945, 115–137 | MR | Zbl

[3] A. I. Komech, “On the stabilization of interaction of a string with a nonlinear oscillator”, Moscow Univ. Math. Bull., 46:6 (1992), 34–39 | MR | Zbl

[4] A. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 22:1–2 (1997), 307–335 | MR | Zbl

[5] Al. Komech, An. Komech, “Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field”, Arch. Ration. Mech. Anal., 185:1 (2007), 105–142 | DOI | MR | Zbl

[6] Al. Komech, An. Komech, “On global attraction to solitary waves for the Klein–Gordon field coupled to several nonlinear oscillators”, J. Math. Pures Appl. (9), 93:1 (2010), 91–111 | DOI | MR | Zbl

[7] Al. Komech, H. Spohn, “Long-time asymptotics for the coupled Maxwell–Lorentz equations”, Comm. Partial Differential Equations, 25:3–4 (2000), 559–584 | DOI | MR | Zbl

[8] E. A. Gorin, D. V. Treschev, “Relative version of the Titchmarsh convolution theorem”, Funct. Anal. Appl., 46:1 (2012), 26–32 | DOI

[9] V. I. Bogachev, Measure theory, v. 1, Springer-Verlag, Berlin, 2007 | MR | Zbl

[10] F. Riesz, B. Sz.-Nagy, Functional analysis, Dover Books Adv. Math., Dover Publ., New York, 1990 | MR | Zbl

[11] I. M. Gel'fand, Lectures on linear algebra, Dover Publ., New York, 1989 | MR | MR | Zbl | Zbl

[12] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979 | MR | MR | Zbl | Zbl