Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction)
Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1077-1109.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the spectral properties of two-particle operators $A$ with weak interaction for spatial dimension $d\geqslant3$. We show that such an operator is unitarily equivalent to the two-particle operator $A_0$ obtained from $A$ by omitting the interaction terms. This is done using a special diagrammatic technique developed in this paper.
Keywords: two-particle operator, wave operators, Cook's method, stationary phase method, diagrams.
@article{IM2_2012_76_6_a1,
     author = {\`E. R. Akchurin and R. A. Minlos},
     title = {Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction)},
     journal = {Izvestiya. Mathematics },
     pages = {1077--1109},
     publisher = {mathdoc},
     volume = {76},
     number = {6},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/}
}
TY  - JOUR
AU  - È. R. Akchurin
AU  - R. A. Minlos
TI  - Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction)
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1077
EP  - 1109
VL  - 76
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/
LA  - en
ID  - IM2_2012_76_6_a1
ER  - 
%0 Journal Article
%A È. R. Akchurin
%A R. A. Minlos
%T Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction)
%J Izvestiya. Mathematics 
%D 2012
%P 1077-1109
%V 76
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/
%G en
%F IM2_2012_76_6_a1
È. R. Akchurin; R. A. Minlos. Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction). Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1077-1109. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/

[1] N. Angelescu, R. A. Minlos, V. A. Zagrebnov, “Lower spectral branches of a particle coupled to a Bose field”, Rev. Math. Phys., 17:10 (2005), 1111–1142 | DOI | MR | Zbl

[2] V. A. Malyshev, R. A. Minlos, Linear infinite-particle operators, Transl. Math. Monogr., 143, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl | Zbl

[3] Y. V. Zhukov, “The Iorio–O'Carroll theorem for an $N$-particle lattice Hamiltonian”, Theoret. and Math. Phys., 107:1 (1996), 478–486 | DOI | MR | Zbl

[4] S. Albeverio, Sh. Alimov, “On some integral equations in Hilbert space with an application to the theory of elasticity”, Integral Equations Operator Theory, 55:2 (2006), 153–168 | DOI | MR | Zbl

[5] J. Appell, A. S. Kalitvin, M. Z. Nashed, “On some partial integral equations arising in the mechanics of solids”, ZAMM Z. Angew. Math. Mech., 79:10 (1999), 703–713 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] I. M. Gelfand, G. E. Schilow, Verallgemeinerte Funktionen (Distributionen). I: Verallgemeinerte Funktionen und das Rechnen mit ihnen, VEB, Berlin, 1960 | MR | MR | Zbl

[7] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., 105, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl

[8] M. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering theory, Academic Press, New York–London, 1979 | MR | MR | Zbl | Zbl

[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl

[10] E. R. Akchurin, “Spectral properties of the generalized Friedrichs model”, Theoret. and Math. Phys., 163:1 (2010), 414–428 | DOI | Zbl

[11] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[12] F. Riesz, B. Szőkefalvi-Nagy, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 1965 | MR | MR | Zbl

[13] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[14] N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl | Zbl

[15] Yu. V. Prohorov, Yu. A. Rozanov, Probability theory: Basic concepts, limit theorems, random processes, Springer-Verlag, New York–Heidelberg, 1969 | MR | MR | Zbl | Zbl