Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_6_a1, author = {\`E. R. Akchurin and R. A. Minlos}, title = {Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction)}, journal = {Izvestiya. Mathematics }, pages = {1077--1109}, publisher = {mathdoc}, volume = {76}, number = {6}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/} }
TY - JOUR AU - È. R. Akchurin AU - R. A. Minlos TI - Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction) JO - Izvestiya. Mathematics PY - 2012 SP - 1077 EP - 1109 VL - 76 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/ LA - en ID - IM2_2012_76_6_a1 ER -
%0 Journal Article %A È. R. Akchurin %A R. A. Minlos %T Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction) %J Izvestiya. Mathematics %D 2012 %P 1077-1109 %V 76 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/ %G en %F IM2_2012_76_6_a1
È. R. Akchurin; R. A. Minlos. Scattering theory for a~class of two-particle operators of mathematical physics (the case of weak interaction). Izvestiya. Mathematics , Tome 76 (2012) no. 6, pp. 1077-1109. http://geodesic.mathdoc.fr/item/IM2_2012_76_6_a1/
[1] N. Angelescu, R. A. Minlos, V. A. Zagrebnov, “Lower spectral branches of a particle coupled to a Bose field”, Rev. Math. Phys., 17:10 (2005), 1111–1142 | DOI | MR | Zbl
[2] V. A. Malyshev, R. A. Minlos, Linear infinite-particle operators, Transl. Math. Monogr., 143, Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl | Zbl
[3] Y. V. Zhukov, “The Iorio–O'Carroll theorem for an $N$-particle lattice Hamiltonian”, Theoret. and Math. Phys., 107:1 (1996), 478–486 | DOI | MR | Zbl
[4] S. Albeverio, Sh. Alimov, “On some integral equations in Hilbert space with an application to the theory of elasticity”, Integral Equations Operator Theory, 55:2 (2006), 153–168 | DOI | MR | Zbl
[5] J. Appell, A. S. Kalitvin, M. Z. Nashed, “On some partial integral equations arising in the mechanics of solids”, ZAMM Z. Angew. Math. Mech., 79:10 (1999), 703–713 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[6] I. M. Gelfand, G. E. Schilow, Verallgemeinerte Funktionen (Distributionen). I: Verallgemeinerte Funktionen und das Rechnen mit ihnen, VEB, Berlin, 1960 | MR | MR | Zbl
[7] D. R. Yafaev, Mathematical scattering theory. General theory, Transl. Math. Monogr., 105, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl
[8] M. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering theory, Academic Press, New York–London, 1979 | MR | MR | Zbl | Zbl
[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl
[10] E. R. Akchurin, “Spectral properties of the generalized Friedrichs model”, Theoret. and Math. Phys., 163:1 (2010), 414–428 | DOI | Zbl
[11] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl
[12] F. Riesz, B. Szőkefalvi-Nagy, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 1965 | MR | MR | Zbl
[13] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl
[14] N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl | Zbl
[15] Yu. V. Prohorov, Yu. A. Rozanov, Probability theory: Basic concepts, limit theorems, random processes, Springer-Verlag, New York–Heidelberg, 1969 | MR | MR | Zbl | Zbl