Moduli of mathematical instanton vector bundles with odd $c_2$ on projective space
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 991-1073.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the moduli space $I_n$ of mathematical instanton vector bundles of rank 2 with second Chern class $n\geqslant1$ on the projective space $\mathbb{P}^3$, and prove the irreducibility of $I_n$ for arbitrary odd $n\geqslant1$.
Keywords: vector bundles, mathematical instantons
Mots-clés : moduli space.
@article{IM2_2012_76_5_a6,
     author = {A. S. Tikhomirov},
     title = {Moduli of mathematical instanton vector bundles with odd $c_2$ on projective space},
     journal = {Izvestiya. Mathematics },
     pages = {991--1073},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a6/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - Moduli of mathematical instanton vector bundles with odd $c_2$ on projective space
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 991
EP  - 1073
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a6/
LA  - en
ID  - IM2_2012_76_5_a6
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T Moduli of mathematical instanton vector bundles with odd $c_2$ on projective space
%J Izvestiya. Mathematics 
%D 2012
%P 991-1073
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a6/
%G en
%F IM2_2012_76_5_a6
A. S. Tikhomirov. Moduli of mathematical instanton vector bundles with odd $c_2$ on projective space. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 991-1073. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a6/

[1] W. Böhmer, G. Trautmann, “Special instanton bundles and Poncelet curves”, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Math., 1273, Springer-Verlag, Berlin, 1987, 325–336 | DOI | MR | Zbl

[2] Th. Nüssler, G. Trautmann, “Multiple Koszul structures on lines and instanton bundles”, Internat. J. Math., 5:3 (1994), 373–388 | DOI | MR | Zbl

[3] W. Barth, “Some properties of stable rank-$2$ vector bundles on $\mathbf{P}_n$”, Math. Ann., 226:2 (1977), 125–150 | DOI | MR | Zbl

[4] R. Hartshorne, “Stable vector bundles of rank $2$ on $P_3$”, Math. Ann., 238:3 (1978), 229–280 | DOI | MR | Zbl

[5] G. Ellingsrud, S. A. Strømme, “Stable rank-$2$ vector bundles on $P_3$ with $c_1=0$ and $c_2=3$”, Math. Ann., 255:1 (1981), 123–135 | DOI | MR | Zbl

[6] W. Barth, “Irreducibility of the space of mathematical instanton bundles with rank $2$ and $c_2=4$”, Math. Ann., 258:1 (1981), 81–106 | DOI | MR | Zbl

[7] I. Coandǎ, A. Tikhomirov, G. Trautmann, “Irreducibility and smoothness of the moduli space of mathematical 5-instantons over $P_3$”, Internat. J. Math., 14:1 (2003), 1–45 | DOI | MR | Zbl

[8] A. N. Tjurin, “The instanton equations for $(n+1)$-superpositions of marked $\operatorname{ad}T\mathbf{P}^3\oplus \operatorname{ad}T\mathbf{P}^3$”, J. Reine Angew. Math., 341 (1983), 131–146 | DOI | MR | Zbl

[9] A. N. Tjurin, “On the superpositions of mathematical instantons”, Arithmetic and geometry, v. II, Progr. Math., 36, Birkhäuser, Boston, MA, 1983, 433–450 | MR | Zbl

[10] M. Skiti, “Sur une famille de fibrés instantons”, Math. Z., 225:3 (1997), 373–394 | DOI | MR | Zbl

[11] V. Beorchia, D. Franco, “On the moduli space of 't Hooft bundles”, Ann. Univ. Ferrara Sez. VII (N.S.), 47 (2001), 253–268 | MR | Zbl

[12] C. Bǎnicǎ, O. Forster, “Multiplicity structures on space curves”, Algebraic geometry. Lefschetz centennial conference, Part I (Mexico City, 1984), Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986, 47–64 | MR | Zbl

[13] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., 31, Vieweg Sohn, Braunschweig, 1997 | MR | Zbl

[14] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl

[15] D. Mumford, Abelian varieties, Oxford Univ. Press, London, 1970 | MR | Zbl | Zbl

[16] D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton, NJ, 1966 | MR | Zbl

[17] S. L. Kleiman, “Relative duality for quasicoherent sheaves”, Compositio Math., 41:1 (1980), 39–60 | MR | Zbl

[18] H. Lange, “Universal families of extensions”, J. Algebra, 83:1 (1983), 101–112 | DOI | MR | Zbl

[19] R. Hartshorne, “Complete intersections and connectedness”, Amer. J. Math., 84:3 (1962), 497–508 | DOI | MR | Zbl

[20] T. G. Room, The geometry of determinantal loci, Cambridge Univ. Press, Cambridge, 1938 | Zbl

[21] K. Okonek, M. Shneider, Kh. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Matematika. Novoe v zarubezhnoi nauke, 36, Mir, M., 1984 ; C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progr. Math., 3, Birkhäuser, Boston, MA, 1980 | MR | Zbl | MR | Zbl

[22] I. Coandǎ, “On Barth's restriction theorem”, J. Reine Angew. Math., 428 (1992), 97–110 | DOI | MR | Zbl