Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_5_a5, author = {S. G. Tankeev}, title = {On the standard conjecture for complex 4-dimensional elliptic varieties}, journal = {Izvestiya. Mathematics }, pages = {967--990}, publisher = {mathdoc}, volume = {76}, number = {5}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a5/} }
S. G. Tankeev. On the standard conjecture for complex 4-dimensional elliptic varieties. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 967-990. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a5/
[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. Colloq. (Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl
[2] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl
[3] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | MR | Zbl
[4] S. L. Kleiman, “The standard conjectures”, Motives, Part I (Seattle, WA, USA, 1991), Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, 3–20 | MR | Zbl
[5] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix esposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR | Zbl
[6] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | MR | Zbl
[7] G. Kempf, F. F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[8] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 175–196 | DOI | MR | Zbl
[9] W. Schmid, “Variation of Hodge structure: The singularities of the period mapping”, Invent. Math., 22:3–4 (1973), 211–319 | DOI | MR | Zbl
[10] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl
[11] Yu. G. Zarkhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl
[12] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl
[13] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl
[14] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44:1 (1974), 5–77 | DOI | MR | Zbl
[15] N. Bourbaki, Éléments de mathématique, Algèbre. Ch. 10: Algèbre homologique, Masson, Paris, 1980 | MR | MR | Zbl | Zbl
[16] Yu. G. Zarhin, “Hodge groups of $K3$ surfaces”, J. Reine Angew. Math., 341 (1983), 193–220 | MR | Zbl
[17] G. E. Bredon, Sheaf theory, McGraw-Hill, New York–Toronto–London, 1967 | MR | MR | Zbl | Zbl
[18] G. Shimura, “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl
[19] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 | MR | MR | Zbl | Zbl
[20] N. Bourbaki, Éléments de mathématique. Algèbre, Ch. IX. Formes sesquilineares et formes quadratiques, Hermann, Paris, 1959 | Zbl
[21] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962 | MR | Zbl | Zbl
[22] M.-H. Saito, S. Zucker, “Classification of non-rigid families of K3 surfaces and a finiteness theorem of Arakelov type”, Math. Ann., 289:1 (1991), 1–31 | DOI | MR | Zbl
[23] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, NJ, 1971 | MR | MR | Zbl | Zbl