On the standard conjecture for complex 4-dimensional elliptic varieties
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 967-990.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of operators $\ast$ and $\Lambda$ of Hodge theory holds for every smooth complex projective model $X$ of the fibre product $X_1\times_C X_2$, where $X_1\to C$ is an elliptic surface over a smooth projective curve $C$ and $X_2\to C$ is a morphism of a smooth projective threefold onto $C$ such that one of the following conditions holds: a generic geometric fibre $X_{2s}$ is an Enriques surface; all fibres of the morphism $X_2\to C$ are smooth $\mathrm{K}3$-surfaces and the Hodge group $\operatorname{Hg}(X_{2s})$ of the generic geometric fibre $X_{2s}$ has no geometric simple factors of type $A_1$ (the assumption on the Hodge group holds automatically if the number $22-\operatorname{rank}\operatorname{NS}(X_{2s})$ is not divisible by 4).
Keywords: elliptic variety, $\mathrm{K}3$-surface, Hodge group, algebraic cycle.
Mots-clés : standard conjecture of Lefschetz type, Enriques surface
@article{IM2_2012_76_5_a5,
     author = {S. G. Tankeev},
     title = {On the standard conjecture for complex 4-dimensional elliptic varieties},
     journal = {Izvestiya. Mathematics },
     pages = {967--990},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a5/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the standard conjecture for complex 4-dimensional elliptic varieties
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 967
EP  - 990
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a5/
LA  - en
ID  - IM2_2012_76_5_a5
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the standard conjecture for complex 4-dimensional elliptic varieties
%J Izvestiya. Mathematics 
%D 2012
%P 967-990
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a5/
%G en
%F IM2_2012_76_5_a5
S. G. Tankeev. On the standard conjecture for complex 4-dimensional elliptic varieties. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 967-990. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a5/

[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. Colloq. (Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl

[2] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl

[3] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Math., 75:5 (2011), 1047–1062 | DOI | MR | Zbl

[4] S. L. Kleiman, “The standard conjectures”, Motives, Part I (Seattle, WA, USA, 1991), Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, 3–20 | MR | Zbl

[5] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix esposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386 | MR | Zbl

[6] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655 | DOI | MR | Zbl

[7] G. Kempf, F. F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[8] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 175–196 | DOI | MR | Zbl

[9] W. Schmid, “Variation of Hodge structure: The singularities of the period mapping”, Invent. Math., 22:3–4 (1973), 211–319 | DOI | MR | Zbl

[10] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 | DOI | MR | Zbl

[11] Yu. G. Zarkhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281 | DOI | MR | Zbl

[12] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl

[13] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl

[14] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44:1 (1974), 5–77 | DOI | MR | Zbl

[15] N. Bourbaki, Éléments de mathématique, Algèbre. Ch. 10: Algèbre homologique, Masson, Paris, 1980 | MR | MR | Zbl | Zbl

[16] Yu. G. Zarhin, “Hodge groups of $K3$ surfaces”, J. Reine Angew. Math., 341 (1983), 193–220 | MR | Zbl

[17] G. E. Bredon, Sheaf theory, McGraw-Hill, New York–Toronto–London, 1967 | MR | MR | Zbl | Zbl

[18] G. Shimura, “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl

[19] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 | MR | MR | Zbl | Zbl

[20] N. Bourbaki, Éléments de mathématique. Algèbre, Ch. IX. Formes sesquilineares et formes quadratiques, Hermann, Paris, 1959 | Zbl

[21] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York–London, 1962 | MR | Zbl | Zbl

[22] M.-H. Saito, S. Zucker, “Classification of non-rigid families of K3 surfaces and a finiteness theorem of Arakelov type”, Math. Ann., 289:1 (1991), 1–31 | DOI | MR | Zbl

[23] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, NJ, 1971 | MR | MR | Zbl | Zbl