Asymptotics of the eigenvalues of a~discrete Schr\"odinger operator with zero-range potential
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 946-966.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of discrete Schrödinger operators $H_{\mu}(k)$, $k\in\mathfrak{G}\subset\mathbb{T}^d$. These operators are associated with the Hamiltonian ${H}_{\mu}$ of a system of two identical quantum particles (bosons) moving on the $d$-dimensional lattice $\mathbb{Z}^d$, $d\geqslant 3$, and interacting by means of a pairwise zero-range (contact) attractive potential $\mu>0$. It is proved that for any $k\in\mathfrak{G}$ there is a number $\mu(k)>0$ which is a threshold value of the coupling constant; for $\mu>\mu(k)$ the operator $H_{\mu}(k)$, $k\in\mathfrak{G}\subset\mathbb{T}^d$, has a unique eigenvalue $z(\mu, k)$ placed to the left of the essential spectrum. The asymptotic behaviour of $z(\mu, k)$ is found as $\mu\to\mu(k)$ and as $\mu\to+\infty$ and also as $k\to k^*$ for every value of the quasi-momentum $k^*=k^*(\mu)$ belonging to the manifold $\{k\in\mathfrak{G}\colon\mu(k)=\mu\}$, where $\mu\in\bigl(\inf_{k\in\mathfrak{G}}\mu(k),\sup_{k\in\mathfrak{G}}\mu(k)\bigr)$.
Keywords: discrete Schrödinger operator, Hamiltonian system of two particles, zero-range (contact) potential, eigenvalue, asymptotic behaviour.
@article{IM2_2012_76_5_a4,
     author = {S. N. Lakaev and Sh. Yu. Kholmatov},
     title = {Asymptotics of the eigenvalues of a~discrete {Schr\"odinger} operator with zero-range potential},
     journal = {Izvestiya. Mathematics },
     pages = {946--966},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a4/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - Sh. Yu. Kholmatov
TI  - Asymptotics of the eigenvalues of a~discrete Schr\"odinger operator with zero-range potential
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 946
EP  - 966
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a4/
LA  - en
ID  - IM2_2012_76_5_a4
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A Sh. Yu. Kholmatov
%T Asymptotics of the eigenvalues of a~discrete Schr\"odinger operator with zero-range potential
%J Izvestiya. Mathematics 
%D 2012
%P 946-966
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a4/
%G en
%F IM2_2012_76_5_a4
S. N. Lakaev; Sh. Yu. Kholmatov. Asymptotics of the eigenvalues of a~discrete Schr\"odinger operator with zero-range potential. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 946-966. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a4/

[1] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, “The threshold effects for the two-particle Hamiltonians on lattices”, Comm. Math. Phys., 262:1 (2006), 91–115 | DOI | MR | Zbl

[2] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Physics, 130:2 (1980), 251–281 | DOI | MR | Zbl

[3] S. N. Lakaev, “Discrete spectrum and resonances of a one-dimensional Schrödinger operator for small values of the coupling constants”, Theoret. and Math. Phys., 44:3 (1980), 810–814 | DOI | MR | Zbl | Zbl

[4] S. N. Lakaev, “Bound states and resonances of $N$-particle discrete Schrödinger operator”, Theoret. and Math. Phys., 91:1 (1992), 362–372 | DOI | MR

[5] S. N. Lakaev, Sh. M. Tilavova, “Merging of eigenvalues and resonances of a two-particle Schrödinger operator”, Theoret. and Math. Phys., 101:2 (1994), 1320–1331 | DOI | MR | Zbl

[6] S. N. Lakaev, “Diskretnyi spektr obobschennoi modeli Fridrikhsa”, Dokl. AN UzSSR, 4 (1979), 9–10 | MR | Zbl

[7] S. N. Lakaev, “Some spectral properties of the generalized Friedrichs model”, J. Soviet Math., 45:6 (1989), 1540–1565 | DOI | MR | Zbl

[8] E. L. Lakshtanov, R. A. Minlos, “The spectrum of two-particle bound states for the transfer matrices of Gibbs fields (an isolated bound state)”, Funct. Anal. Appl., 38:3 (2004), 202–216 | DOI | MR | Zbl

[9] E. L. Lakshtanov, R. A. Minlos, “Two-particle bound state spectrum of transfer matrices for Gibbs fields (fields on the two-dimensional lattice. Adjacent levels)”, Funct. Anal. Appl., 39:1 (2005), 31–45 | DOI | MR | Zbl

[10] S. N. Lakaev, “On Efimov's effect in a system of three identical quantum particles”, Funct. Anal. Appl., 27:3 (1993), 166–175 | DOI | MR | Zbl

[11] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Comm. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[12] D. R. Jafaev, “On the theory of the discrete spectrum of the three-particle Schrödinger operator”, Math. USSR-Sb., 23:4 (1974), 535–559 | DOI | MR | Zbl

[13] H. Tamura, “The Efimov effect of three-body Schrödinger operators”, J. Funct. Anal., 95:2 (1991), 433–459 | DOI | MR | Zbl

[14] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[15] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl

[16] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[17] S. N. Lakaev, Sh. Yu. Holmatov, “Asymptotics of eigenvalues of two-particle Schrödinger operators on lattices with zero range interaction”, J. Phys. A, 44:13 (2011) | DOI | MR | Zbl

[18] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive”, Probab. Theory Related Fields, 129:1 (2004), 133–156 | DOI | MR | Zbl

[19] R. Courant, D. Hilbert, Methods of mathematical physics, v. 2, Partial differential equations, Wiley, New York, 1989 | MR | Zbl | Zbl