Cohomology of real four-dimensional triquadrics
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 922-945.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-singular intersections of three real six-dimensional quadrics. They are referred to for brevity as real four-dimensional triquadrics. We calculate the dimensions of their cohomology spaces with coefficients in the field of two elements.
Keywords: spectral curve, spectral bundle, index function
Mots-clés : triquadric, index orientation.
@article{IM2_2012_76_5_a3,
     author = {V. A. Krasnov},
     title = {Cohomology of real four-dimensional triquadrics},
     journal = {Izvestiya. Mathematics },
     pages = {922--945},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Cohomology of real four-dimensional triquadrics
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 922
EP  - 945
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/
LA  - en
ID  - IM2_2012_76_5_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Cohomology of real four-dimensional triquadrics
%J Izvestiya. Mathematics 
%D 2012
%P 922-945
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/
%G en
%F IM2_2012_76_5_a3
V. A. Krasnov. Cohomology of real four-dimensional triquadrics. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 922-945. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/

[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077v2

[2] O. Ja. Viro, “Plane real curves of degrees 7 and 8: New restrictions”, Math. USSR-Izv., 23:2 (1984), 409–422 | DOI | MR | Zbl

[3] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl

[4] V. A. Krasnov, “Cohomology of real three-dimensional triquadrics”, Izv. Math., 76:1 (2012), 113–138 | DOI

[5] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[6] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[7] V. A. Krasnov, “On the number of components of a three-dimensional maximal intersection of three real quadrics”, Izv. Math., 75:3 (2011), 589–602 | DOI | MR | Zbl

[8] M. F. Atiyah, $K$-theory, Benjamin, New York–Amsterdam, 1967 | MR | MR | Zbl | Zbl

[9] D. Husemoller, Fibre bundles, McGraw-Hill, New York–London–Sydney, 1966 | MR | Zbl | Zbl

[10] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl

[11] B. H. Gross, J. Harris, “Real algebraic curves”, Ann. Sci. École Norm. Sup. (4), 14:2 (1981), 157–182 | MR | Zbl

[12] S. Yu. Orevkov, “Classification of flexible $M$-curves of degree 8 up to isotopy”, Geom. Funct. Anal., 12:4 (2002), 723–755 | DOI | MR | Zbl