Cohomology of real four-dimensional triquadrics
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 922-945

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-singular intersections of three real six-dimensional quadrics. They are referred to for brevity as real four-dimensional triquadrics. We calculate the dimensions of their cohomology spaces with coefficients in the field of two elements.
Keywords: spectral curve, spectral bundle, index function
Mots-clés : triquadric, index orientation.
@article{IM2_2012_76_5_a3,
     author = {V. A. Krasnov},
     title = {Cohomology of real four-dimensional triquadrics},
     journal = {Izvestiya. Mathematics },
     pages = {922--945},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Cohomology of real four-dimensional triquadrics
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 922
EP  - 945
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/
LA  - en
ID  - IM2_2012_76_5_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Cohomology of real four-dimensional triquadrics
%J Izvestiya. Mathematics 
%D 2012
%P 922-945
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/
%G en
%F IM2_2012_76_5_a3
V. A. Krasnov. Cohomology of real four-dimensional triquadrics. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 922-945. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/