Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_5_a3, author = {V. A. Krasnov}, title = {Cohomology of real four-dimensional triquadrics}, journal = {Izvestiya. Mathematics }, pages = {922--945}, publisher = {mathdoc}, volume = {76}, number = {5}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/} }
V. A. Krasnov. Cohomology of real four-dimensional triquadrics. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 922-945. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a3/
[1] A. Degtyarev, I. Itenberg, V. Kharlamov, On the number of components of a complete intersection of real quadrics, arXiv: 0806.4077v2
[2] O. Ja. Viro, “Plane real curves of degrees 7 and 8: New restrictions”, Math. USSR-Izv., 23:2 (1984), 409–422 | DOI | MR | Zbl
[3] V. A. Rokhlin, “Complex topological characteristics of real algebraic curves”, Russian Math. Surveys, 33:5 (1978), 85–98 | DOI | MR | Zbl | Zbl
[4] V. A. Krasnov, “Cohomology of real three-dimensional triquadrics”, Izv. Math., 76:1 (2012), 113–138 | DOI
[5] A. A. Agrachev, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl
[6] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl
[7] V. A. Krasnov, “On the number of components of a three-dimensional maximal intersection of three real quadrics”, Izv. Math., 75:3 (2011), 589–602 | DOI | MR | Zbl
[8] M. F. Atiyah, $K$-theory, Benjamin, New York–Amsterdam, 1967 | MR | MR | Zbl | Zbl
[9] D. Husemoller, Fibre bundles, McGraw-Hill, New York–London–Sydney, 1966 | MR | Zbl | Zbl
[10] A. C. Dixon, “Note on the reduction of a ternary quantic to a symmetrical determinant”, Proc. Cambridge Philos. Soc., 5 (1902), 350–351 | Zbl
[11] B. H. Gross, J. Harris, “Real algebraic curves”, Ann. Sci. École Norm. Sup. (4), 14:2 (1981), 157–182 | MR | Zbl
[12] S. Yu. Orevkov, “Classification of flexible $M$-curves of degree 8 up to isotopy”, Geom. Funct. Anal., 12:4 (2002), 723–755 | DOI | MR | Zbl