Isovariant extensors and the characterization of equivariant homotopy equivalences
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 857-880

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the well-known theorem of James–Segal to the case of an arbitrary family $\mathcal{F}$ of conjugacy classes of closed subgroups of a compact Lie group $G$: a $G$-map $f\colon\mathbb{X}\to\mathbb{Y}$ of metric $\operatorname{Equiv}_{\mathcal{F}}$-$\mathrm{ANE}$-spaces is a $G$-homotopy equivalence if and only if it is a weak $G$-$\mathcal{F}$-homotopy equivalence. The proof is based on the theory of isovariant extensors, which is developed in this paper and enables us to endow $\mathcal{F}$-classifying $G$-spaces with an additional structure.
Keywords: classifying $G$-spaces, isovariant absolute extensor, weak equivariant homotopy equivalence.
@article{IM2_2012_76_5_a0,
     author = {S. M. Ageev},
     title = {Isovariant extensors and the characterization of equivariant homotopy equivalences},
     journal = {Izvestiya. Mathematics },
     pages = {857--880},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Isovariant extensors and the characterization of equivariant homotopy equivalences
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 857
EP  - 880
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/
LA  - en
ID  - IM2_2012_76_5_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Isovariant extensors and the characterization of equivariant homotopy equivalences
%J Izvestiya. Mathematics 
%D 2012
%P 857-880
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/
%G en
%F IM2_2012_76_5_a0
S. M. Ageev. Isovariant extensors and the characterization of equivariant homotopy equivalences. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 857-880. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/