Isovariant extensors and the characterization of equivariant homotopy equivalences
Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 857-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the well-known theorem of James–Segal to the case of an arbitrary family $\mathcal{F}$ of conjugacy classes of closed subgroups of a compact Lie group $G$: a $G$-map $f\colon\mathbb{X}\to\mathbb{Y}$ of metric $\operatorname{Equiv}_{\mathcal{F}}$-$\mathrm{ANE}$-spaces is a $G$-homotopy equivalence if and only if it is a weak $G$-$\mathcal{F}$-homotopy equivalence. The proof is based on the theory of isovariant extensors, which is developed in this paper and enables us to endow $\mathcal{F}$-classifying $G$-spaces with an additional structure.
Keywords: classifying $G$-spaces, isovariant absolute extensor, weak equivariant homotopy equivalence.
@article{IM2_2012_76_5_a0,
     author = {S. M. Ageev},
     title = {Isovariant extensors and the characterization of equivariant homotopy equivalences},
     journal = {Izvestiya. Mathematics },
     pages = {857--880},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Isovariant extensors and the characterization of equivariant homotopy equivalences
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 857
EP  - 880
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/
LA  - en
ID  - IM2_2012_76_5_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Isovariant extensors and the characterization of equivariant homotopy equivalences
%J Izvestiya. Mathematics 
%D 2012
%P 857-880
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/
%G en
%F IM2_2012_76_5_a0
S. M. Ageev. Isovariant extensors and the characterization of equivariant homotopy equivalences. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 857-880. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/

[1] I. M. James, G. B. Segal, “On equivariant homotopy type”, Topology, 17:3 (1978), 267–272 | DOI | MR | Zbl

[2] I. M. James, G. B. Segal, “On equivariant homotopy theory”, Topology Symposium (Siegen, 1979), Lect. Notes in Math., 788, Springer-Verlag, Berlin, 1980, 316–330 | DOI | MR | Zbl

[3] R. M. Seymour, “Some functional constructions on $G$-spaces”, Bull. London Math. Soc., 15:4 (1983), 353–359 | DOI | MR | Zbl

[4] R. M. Seymour, “On $G$-cohomology theories and Künneth formulae”, Current trends in algebraic topology, Part 1 (London, ON, 1981), CMS Conf. Proc., 2, Amer. Math. Soc., Providence, RI, 1982, 251–271 | MR | Zbl

[5] Wu Yi Hsiang, Cohomology theory of topological transformation groups, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | MR | Zbl | Zbl

[6] J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conf. Ser. in Math., 91, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[7] T. tom Dieck, Transformation groups, de Gruyter Stud. Math., 8, de Gruyter, Berlin–New York, 1987 | MR | Zbl

[8] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl | Zbl

[9] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer-Verlag, Berlin–New York, 1967 | DOI | MR | Zbl

[10] S. Waner, “A generalization of the cohomology of groups”, Proc. Amer. Math. Soc., 85:3 (1982), 469–474 | DOI | MR | Zbl

[11] S. Waner, “Mackey functors and $G$-cohomology”, Proc. Amer. Math. Soc., 90:4 (1984), 641–648 | DOI | MR | Zbl

[12] S. M. Ageev, “Universalnye $G$-prostranstva Pale i izovariantnye absolyutnye ekstenzory”, Matem. sb., 203:6 (2012), 3–34

[13] M. Murayama, “On $G$-ANR's and their $G$-homotopy types”, Osaka J. Math., 20:3 (1983), 479–512 | MR | Zbl

[14] R. S. Palais, “The classification of $G$-spaces”, Mem. Amer. Math. Soc., 36, Amer. Math. Soc., Providence, RI, 1960 | MR | Zbl

[15] S. M. Ageev, D. Repovsh, “Zadacha o rasprostranenii nakryvayuschei gomotopii dlya kompaktnykh grupp preobrazovanii”, Matem. zametki (to appear)

[16] S. M. Ageev, “Svobodnye ekvivariantnye ekstenzory”, Obschaya topologiya. Prostranstva i otobrazheniya, Izd-vo MGU, M., 1994, 2–8

[17] S. M. Ageev, “Classification of $G$-spaces”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 581–591 | DOI | MR | Zbl

[18] S. M. Ageev, D. Repovš, “On extending actions of groups”, Sb. Math., 201:2 (2010), 159–182 | DOI | MR | Zbl

[19] S. Weinberger, The topological classification of stratified spaces, Chicago Lectures in Math., Chicago State Univ. Press, Chicago, IL, 1994 | MR | Zbl

[20] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York–London, 1972 | MR | MR | Zbl | Zbl

[21] K. Borsuk, Theory of retracts, Państwowe Wydawnictwo Naukowe, Warsaw, 1967 | MR | MR | Zbl

[22] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965 | MR | Zbl

[23] T. tom Dieck, K. H. Kamps, D. Puppe, Homotopietheorie, Lecture Notes in Math., 157, Springer-Verlag, Berlin–New York, 1970 | DOI | MR | Zbl

[24] M. M. Postnikov, Lektsii po algebraicheskoi topologii. Osnovy teorii gomotopii, Nauka, M., 1984 | MR | Zbl