Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_5_a0, author = {S. M. Ageev}, title = {Isovariant extensors and the characterization of equivariant homotopy equivalences}, journal = {Izvestiya. Mathematics }, pages = {857--880}, publisher = {mathdoc}, volume = {76}, number = {5}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/} }
S. M. Ageev. Isovariant extensors and the characterization of equivariant homotopy equivalences. Izvestiya. Mathematics , Tome 76 (2012) no. 5, pp. 857-880. http://geodesic.mathdoc.fr/item/IM2_2012_76_5_a0/
[1] I. M. James, G. B. Segal, “On equivariant homotopy type”, Topology, 17:3 (1978), 267–272 | DOI | MR | Zbl
[2] I. M. James, G. B. Segal, “On equivariant homotopy theory”, Topology Symposium (Siegen, 1979), Lect. Notes in Math., 788, Springer-Verlag, Berlin, 1980, 316–330 | DOI | MR | Zbl
[3] R. M. Seymour, “Some functional constructions on $G$-spaces”, Bull. London Math. Soc., 15:4 (1983), 353–359 | DOI | MR | Zbl
[4] R. M. Seymour, “On $G$-cohomology theories and Künneth formulae”, Current trends in algebraic topology, Part 1 (London, ON, 1981), CMS Conf. Proc., 2, Amer. Math. Soc., Providence, RI, 1982, 251–271 | MR | Zbl
[5] Wu Yi Hsiang, Cohomology theory of topological transformation groups, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | MR | Zbl | Zbl
[6] J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conf. Ser. in Math., 91, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[7] T. tom Dieck, Transformation groups, de Gruyter Stud. Math., 8, de Gruyter, Berlin–New York, 1987 | MR | Zbl
[8] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl | Zbl
[9] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer-Verlag, Berlin–New York, 1967 | DOI | MR | Zbl
[10] S. Waner, “A generalization of the cohomology of groups”, Proc. Amer. Math. Soc., 85:3 (1982), 469–474 | DOI | MR | Zbl
[11] S. Waner, “Mackey functors and $G$-cohomology”, Proc. Amer. Math. Soc., 90:4 (1984), 641–648 | DOI | MR | Zbl
[12] S. M. Ageev, “Universalnye $G$-prostranstva Pale i izovariantnye absolyutnye ekstenzory”, Matem. sb., 203:6 (2012), 3–34
[13] M. Murayama, “On $G$-ANR's and their $G$-homotopy types”, Osaka J. Math., 20:3 (1983), 479–512 | MR | Zbl
[14] R. S. Palais, “The classification of $G$-spaces”, Mem. Amer. Math. Soc., 36, Amer. Math. Soc., Providence, RI, 1960 | MR | Zbl
[15] S. M. Ageev, D. Repovsh, “Zadacha o rasprostranenii nakryvayuschei gomotopii dlya kompaktnykh grupp preobrazovanii”, Matem. zametki (to appear)
[16] S. M. Ageev, “Svobodnye ekvivariantnye ekstenzory”, Obschaya topologiya. Prostranstva i otobrazheniya, Izd-vo MGU, M., 1994, 2–8
[17] S. M. Ageev, “Classification of $G$-spaces”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 581–591 | DOI | MR | Zbl
[18] S. M. Ageev, D. Repovš, “On extending actions of groups”, Sb. Math., 201:2 (2010), 159–182 | DOI | MR | Zbl
[19] S. Weinberger, The topological classification of stratified spaces, Chicago Lectures in Math., Chicago State Univ. Press, Chicago, IL, 1994 | MR | Zbl
[20] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York–London, 1972 | MR | MR | Zbl | Zbl
[21] K. Borsuk, Theory of retracts, Państwowe Wydawnictwo Naukowe, Warsaw, 1967 | MR | MR | Zbl
[22] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965 | MR | Zbl
[23] T. tom Dieck, K. H. Kamps, D. Puppe, Homotopietheorie, Lecture Notes in Math., 157, Springer-Verlag, Berlin–New York, 1970 | DOI | MR | Zbl
[24] M. M. Postnikov, Lektsii po algebraicheskoi topologii. Osnovy teorii gomotopii, Nauka, M., 1984 | MR | Zbl