Stability of convex sets and applications
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 840-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

We briefly review the results related to the notion of stability of convex sets and consider some of their applications. We prove a corollary of the stability property which enables us to develop an approximation technique for concave functions on a wide class of convex sets. This technique yields necessary and sufficient conditions for the local continuity of concave functions. We describe some examples of their applications.
Keywords: stable convex set, concave function, weak convergence of probability measures
Mots-clés : barycentric map.
@article{IM2_2012_76_4_a7,
     author = {M. E. Shirokov},
     title = {Stability of convex sets and applications},
     journal = {Izvestiya. Mathematics },
     pages = {840--856},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a7/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Stability of convex sets and applications
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 840
EP  - 856
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a7/
LA  - en
ID  - IM2_2012_76_4_a7
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Stability of convex sets and applications
%J Izvestiya. Mathematics 
%D 2012
%P 840-856
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a7/
%G en
%F IM2_2012_76_4_a7
M. E. Shirokov. Stability of convex sets and applications. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 840-856. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a7/

[1] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[2] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 1-e izd., Fizmatlit, M., 2004 | Zbl

[3] J. Vesterstrøm, “On open maps, compact convex sets, and operator algebras”, J. London Math. Soc. (2), 6 (1973), 289–297 | DOI | MR | Zbl

[4] A. Lima, “On continuous convex functions and split faces”, Proc. London Math. Soc. (3), 25 (1972), 27–40 | DOI | MR | Zbl

[5] R. C. O'Brien, “On the openness of the barycentre map”, Math. Ann., 223:3 (1976), 207–212 | DOI | MR | Zbl

[6] S. Papadopoulou, “On the geometry of stable compact convex sets”, Math. Ann., 229:3 (1977), 193–200 | DOI | MR | Zbl

[7] A. Clausing, S. Papadopoulou, “Stable convex sets and extremal operators”, Math. Ann., 231:3 (1978), 193–203 | DOI | MR | Zbl

[8] R. Grzaślewicz, “Extreme continuous function property”, Acta Math. Hungar., 74:1–2 (1997), 93–99 | DOI | MR | Zbl

[9] J. Lukeš, J. Malý, I. Netuka, J. Spurný, Integral representation theory. Applications to convexity, Banach spaces and potential theory, de Gruyter Stud. Math., 35, de Gruyter, Berlin–New York, 2010 | MR | Zbl

[10] V. Yu. Protasov, M. E. Shirokov, “Generalized compactness in linear spaces and its applications”, Sb. Math., 200:5 (2009), 697–722 | DOI | MR | Zbl

[11] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001 | MR | Zbl

[12] M. E. Shirokov, “Continuity of the von Neumann entropy”, Comm. Math. Phys., 296:3 (2010), 625–654 | DOI | MR | Zbl

[13] P. Billingsley, Convergence of probability measures, Wiley, New York–London–Sydney, 1968 | MR | MR | Zbl

[14] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York–London, 1967 | MR | Zbl

[15] N. N. Vakhania, V. I. Tarieladze, “Covariance operators of probability measures in locally convex spaces”, Theory Probab. Appl., 23:1 (1978), 1–21 | DOI | MR | Zbl | Zbl

[16] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis, Springer-Verlag, Berlin, 2006 | MR | Zbl

[17] L. Q. Eifler, “Open mapping theorems for probability measures on metric spaces”, Pacific J. Math., 66:1 (1976), 89–97 | MR | Zbl

[18] G. A. Edgar, “On the Radon–Nikodým property and martingale convergence”, Vector space measures and applications (Dublin, 1977), Lecture Notes in Math., 645, Springer-Verlag, Berlin–New York, 1978, 62–76 | DOI | MR | Zbl

[19] M. E. Shirokov, Continuity condition for concave functions on convex $\mu$-compact sets and its applications in quantum physics, arXiv: 1006.4155

[20] S. Kullback, Information theory and statistics, Wiley, New York, 1959 | MR | Zbl

[21] P. M. Alberti, A. Uhlmann, Stochasticity and partial order, Math. Monogr., 18, VEB, Berlin, 1981 | MR | Zbl

[22] A. Wehrl, “How chaotic is a state of a quantum system?”, Rep. Math. Phys., 6 (1974), 15–28 | DOI | MR

[23] R. Bhatia, Matrix analysis, Grad. Texts in Math., 169, Springer-Verlag, New York, 1997 | MR | Zbl