Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_4_a5, author = {D. Frolenkov}, title = {The mean value of {Frobenius} numbers with three arguments}, journal = {Izvestiya. Mathematics }, pages = {760--819}, publisher = {mathdoc}, volume = {76}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a5/} }
D. Frolenkov. The mean value of Frobenius numbers with three arguments. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 760-819. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a5/
[1] J. L. Ramirez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005 | MR | Zbl
[2] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | MR | Zbl
[3] J. L. Davison, “On the linear Diophantine problem of Frobenius”, J. Number Theory, 48:3 (1994), 353–363 | DOI | MR | Zbl
[4] A. V. Ustinov, “Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm”, Izv. Math., 72:5 (2008), 1023–1059 | DOI | MR | Zbl
[5] E. N. Zhabitskaya, “The average length of reduced regular continued fractions”, Sb. Math., 200:8 (2009), 1181–1214 | DOI | MR | Zbl
[6] D. E. Knuth, A. C. Yao, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Nat. Acad. Sci. U.S.A., 72:12 (1975), 4720–4722 | DOI | MR | Zbl
[7] K. Chandrasekharan, Introduction to analytic number theory, Springer-Verlag, New York, 1968 | MR | MR | Zbl
[8] A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl | Zbl
[9] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[10] Ö. J. Rödseth, “On a linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 301 (1978), 171–178 | DOI | MR | Zbl
[11] O. Perron, Die Lehre von den Kettenbrüchen, Bd. I. Elementare Kettenbrüche, Teuber, Stuttgart, 1954 | MR | Zbl
[12] S. M. Johnson, “A linear Diophantine problem”, Canad. J. Math., 12 (1960), 390–398 | DOI | MR | Zbl
[13] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Plenum, New York, 1969, 87–96 | MR | Zbl