The mean value of Frobenius numbers with three arguments
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 760-819.

Voir la notice de l'article provenant de la source Math-Net.Ru

We get an asymptotic formula for the mean value of Frobenius numbers with three arguments when averaged with respect to three parameters.
Keywords: Frobenius numbers, exponential sums.
@article{IM2_2012_76_4_a5,
     author = {D. Frolenkov},
     title = {The mean value of {Frobenius} numbers with three arguments},
     journal = {Izvestiya. Mathematics },
     pages = {760--819},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a5/}
}
TY  - JOUR
AU  - D. Frolenkov
TI  - The mean value of Frobenius numbers with three arguments
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 760
EP  - 819
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a5/
LA  - en
ID  - IM2_2012_76_4_a5
ER  - 
%0 Journal Article
%A D. Frolenkov
%T The mean value of Frobenius numbers with three arguments
%J Izvestiya. Mathematics 
%D 2012
%P 760-819
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a5/
%G en
%F IM2_2012_76_4_a5
D. Frolenkov. The mean value of Frobenius numbers with three arguments. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 760-819. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a5/

[1] J. L. Ramirez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005 | MR | Zbl

[2] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | MR | Zbl

[3] J. L. Davison, “On the linear Diophantine problem of Frobenius”, J. Number Theory, 48:3 (1994), 353–363 | DOI | MR | Zbl

[4] A. V. Ustinov, “Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm”, Izv. Math., 72:5 (2008), 1023–1059 | DOI | MR | Zbl

[5] E. N. Zhabitskaya, “The average length of reduced regular continued fractions”, Sb. Math., 200:8 (2009), 1181–1214 | DOI | MR | Zbl

[6] D. E. Knuth, A. C. Yao, “Analysis of the subtractive algorithm for greatest common divisors”, Proc. Nat. Acad. Sci. U.S.A., 72:12 (1975), 4720–4722 | DOI | MR | Zbl

[7] K. Chandrasekharan, Introduction to analytic number theory, Springer-Verlag, New York, 1968 | MR | MR | Zbl

[8] A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl | Zbl

[9] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl

[10] Ö. J. Rödseth, “On a linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 301 (1978), 171–178 | DOI | MR | Zbl

[11] O. Perron, Die Lehre von den Kettenbrüchen, Bd. I. Elementare Kettenbrüche, Teuber, Stuttgart, 1954 | MR | Zbl

[12] S. M. Johnson, “A linear Diophantine problem”, Canad. J. Math., 12 (1960), 390–398 | DOI | MR | Zbl

[13] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Plenum, New York, 1969, 87–96 | MR | Zbl