Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_4_a4, author = {A. Yu. Pirkovskii}, title = {Homological dimensions and {Van} den {Bergh} isomorphisms for nuclear {Fr\'echet} algebras}, journal = {Izvestiya. Mathematics }, pages = {702--759}, publisher = {mathdoc}, volume = {76}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a4/} }
A. Yu. Pirkovskii. Homological dimensions and Van den Bergh isomorphisms for nuclear Fr\'echet algebras. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 702-759. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a4/
[1] H. Cartan, S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956 | MR | MR | Zbl
[2] A. Ya. Khelemskii, The homology of Banach and topological algebras, Math. Appl. (Soviet Ser.), 41, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[3] A. Ya. Helemskii, “Homology for the algebras of analysis”, Handbook of algebra, v. 2, North-Holland, Amsterdam, 2000, 151–274 | MR | Zbl
[4] O. E. Villamayor, “On weak dimension of algebras”, Pacific J. Math., 9 (1959), 941–951 | MR | Zbl
[5] J. C. McConnell, J. J. Pettit, “Crossed products and multiplicative analogues of Weyl algebras”, J. London Math. Soc. (2), 38:1 (1988), 47–55 | DOI | MR | Zbl
[6] A. J. Helemskiǐ, “On the homological dimension of normed modules over Banach algebras”, Math. USSR-Sb., 10:3 (1970), 399–411 | DOI | MR | Zbl | Zbl
[7] A. Ya. Khelemskii, “Global dimension of a Banach function algebra is different from unity”, Funct. Anal. Appl., 6:2 (1972), 166–168 | DOI | MR | Zbl
[8] A. Ya. Helemskii, “31 problems of the homology of the algebras of analysis”, Linear and complex analysis, Problem book 3. Part I, Lecture Notes in Math., 1573, Springer-Verlag, Berlin, 1994, 54–78 | DOI | MR | Zbl
[9] S. Eilenberg, “Algebras of cohomologically finite dimension”, Comment. Math. Helv., 28 (1954), 310–319 | DOI | MR | Zbl
[10] D. Happel, “Hochschild cohomology of finite-dimensional algebras”, Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin (Paris, 1987/1988), Lecture Notes in Math., 1404, Springer-Verlag, Berlin, 1989, 108–126 | DOI | MR | Zbl
[11] M. Auslander, “On the dimension of modules and algebras. VI. Comparison of global and algebra dimension”, Nagoya Math. J., 11 (1957), 61–65 | MR | Zbl
[12] R. Meise, D. Vogt, Introduction to functional analysis, Oxf. Grad. Texts Math., 2, Clarendon Press, New York, 1997 | MR | Zbl
[13] M. Van den Bergh, “A relation between Hochschild homology and cohomology for Gorenstein rings”, Proc. Amer. Math. Soc., 126:5 (1998), 1345–1348 ; “Erratum”, Proc. Amer. Math. Soc., 130:9 (2002), 2809–2810 | DOI | MR | Zbl | DOI | MR
[14] P. K. Rashevskii, “Assotsiativnaya sverkhobolochka algebry Li, ee regulyarnoe predstavlenie i idealy”, Tr. MMO, 15, Izd-vo Mosk. un-ta, M., 1966, 3–54 | MR | Zbl
[15] R. Goodman, “Filtrations and canonical coordinates on nilpotent Lie groups”, Trans. Amer. Math. Soc., 237, 1978, 189–204 | DOI | MR | Zbl
[16] R. Goodman, “Holomorphic representations of nilpotent Lie groups”, J. Funct. Anal., 31:1 (1979), 115–137 | DOI | MR | Zbl
[17] G. L. Litvinov, “On completely irreducible representations of complex and real nilpotent Lie groups”, Funct. Anal. Appl., 3:4 (1969), 332–334 | DOI | MR | Zbl
[18] G. L. Litvinov, “Group algebras of analytic functionals and their representations”, Soviet Math. Dokl., 11:1 (1970), 191–194 | MR | Zbl
[19] G. L. Litvinov, “Representations of groups in locally convex spaces and topological group algebras”, Sel. Math. Sov., 7:2 (1999), 101–182 | MR | Zbl
[20] M. A. Rieffel, “Deformation quantization of Heisenberg manifolds”, Comm. Math. Phys., 122:4 (1989), 531–562 | DOI | MR | Zbl
[21] A. Yu. Pirkovskii, “Arens–Michael envelopes, homological epimorphisms, and relatively quasi-free algebras”, Trans. Moscow Math. Soc., 2008, 27–104 | MR | Zbl
[22] A. Yu. Pirkovskii, “On Arens–Michael algebras which do not have non-zero injective $\widehat \otimes$-modules”, Studia Math., 133:2 (1999), 163–174 | MR | Zbl
[23] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966 | MR | MR | Zbl | Zbl
[24] A. P. Robertson, W. J. Robertson, Topological vector spaces, Cambridge Tracts in Math., 53, Cambridge Univ. Press, Cambridge, 1964 | MR | MR | Zbl | Zbl
[25] A. Grothendieck, Topological vector spaces, Gordon and Breach, New York–London–Paris, 1973 | MR | Zbl
[26] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologiya, Nauka, M., 1989 | MR | Zbl
[27] N. Bourbaki, Éléments de mathématique. Première partie. (Fascicule II.) Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre. 2: Structures uniformes, Hermann Cie, Paris, 1961 | MR | MR | Zbl
[28] V. P. Palamodov, “Homological methods in the theory of locally convex spaces”, Russian Math. Surveys, 26:1 (1971), 1–64 | DOI | MR | Zbl
[29] C. A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[30] J. L. Taylor, “Homology and cohomology for topological algebras”, Advances in Math., 9 (1972), 137–182 | DOI | MR | Zbl
[31] E. A. Michael, “Locally multiplicatively-convex topological algebras”, Mem. Amer. Math. Soc., 1952, no. 11 | MR | Zbl
[32] P. Bonneau, M. Flato, M. Gerstenhaber, G. Pinczon, “The hidden group structure of quantum groups: Strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161:1 (1994), 125–156 | DOI | MR | Zbl
[33] A. Yu. Pirkovskii, “The problem of the existence of sufficiently many injective Fréchet modules over non-normed Fréchet algebras”, Izv. Math., 62:4 (1998), 773–788 | DOI | MR | Zbl
[34] A. Yu. Pirkovskii, “Weak homological dimensions and biflat Köthe algebras”, Sb. Math., 199:5 (2008), 673–705 | DOI | MR | Zbl
[35] A. Yu. Pirkovskii, “Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities”, Homology, Homotopy Appl., 11:1 (2009), 81–114 | MR | Zbl
[36] B. Stenström, Rings of quotients. An introduction to methods of ring theory, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl
[37] J. L. Taylor, “A general framework for a multi-operator functional calculus”, Advances in Math., 9 (1972), 183–252 | DOI | MR | Zbl
[38] W. Geigle, H. Lenzing, “Perpendicular categories with applications to representations and sheaves”, J. Algebra, 144:2 (1991), 273–343 | DOI | MR | Zbl
[39] A. Neeman, A. Ranicki, Noncommutative localization and chain complexes. I. Algebraic $K$- and $L$-theory, arXiv: math.RA/0109118
[40] R. Meyer, Embeddings of derived categories of bornological modules, arXiv: math.FA/0410596
[41] J. L. Taylor, “Functions of several noncommuting variables”, Bull. Amer. Math. Soc., 79 (1973), 1–34 | DOI | MR | Zbl
[42] D. Luminet, “A functional calculus for Banach PI-algebras”, Pacific J. Math., 125:1 (1986), 127–160 | MR | Zbl
[43] A. Ya. Khelemskii, “Homological methods in Taylor's holomorphic calculus of several operators in a Banach space”, Russian Math. Surveys, 36:1 (1981), 139–192 | DOI | MR | Zbl
[44] A. A. Dosiev, “Homological dimensions of the algebra formed by entire functions of elements of a nilpotent Lie algebra”, Funct. Anal. Appl., 37:1 (2003), 61–64 | DOI | MR | Zbl
[45] A. Dosiev, “Local left invertibility for operator tuples and noncommutative localizations”, J. K-Theory, 4:1 (2009), 163–191 | DOI | MR | Zbl
[46] A. Dosi, “Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations”, Algebra Colloq., 17: Special Issue 1 (2010), 749–788 | MR | Zbl
[47] A. Yu. Pirkovskii, “Stably flat completions of universal enveloping algebras”, Dissertationes Math. (Rozprawy Mat.), 441 (2006) | DOI | MR | Zbl
[48] J. V. Selivanov, “Biprojective Banach algebras”, Math. USSR-Izv., 15:2 (1980), 387–399 | DOI | MR | Zbl | Zbl
[49] N. Bourbaki, “Sur certains espaces vectoriels topologiques”, Ann. Inst. Fourier Grenoble, 2 (1950), 5–16 | DOI | MR | Zbl
[50] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud., 176, North-Holland, Amsterdam, 1993 | MR | Zbl
[51] H. Hogbe-Nlend, Bornologies and functional analysis, North-Holland, Amsterdam–New York–Oxford, 1977 | MR | Zbl
[52] R. Douady, “Produits tensoriels topologiques et espaces nucléaires”, Quelques problèmes de modules (Paris, 1971–1972), Soc. Math. France, Paris, 1974, 7–32 | MR | Zbl
[53] G. Köthe, Topological vector spaces. II, Grundlehren Math. Wiss., 237, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl
[54] J. Eschmeier, M. Putinar, Spectral decompositions and analytic sheaves, London Math. Soc. Monogr. (N.S.), 10, Clarendon Press, New York, 1996 | MR | Zbl
[55] A. Pietsch, Operator ideals, Math. Monogr., 16, VEB, Berlin, 1978 | MR | MR | Zbl | Zbl
[56] R. Engelking, Obschaya topologiya, Mir, M., 1986 ; R. Engelking, General topology, PWN, Warsaw, 1977 | MR | MR | Zbl
[57] A. Mallios, Topological algebras. Selected topics, North-Holland Math. Stud., 124, North-Holland, Amsterdam, 1986 | MR | Zbl
[58] A. Connes, “Noncommutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 257–360 | MR
[59] A. Pietsch, “Zur Theorie der topologischen Tensorprodukte”, Math. Nachr., 25 (1963), 19–30 | DOI | MR | Zbl
[60] D. Vogt, “Sequence space representations of spaces of test functions and distributions”, Functional analysis, holomorphy, and approximation theory (Rio de Janeiro, 1979), Lecture Notes in Pure and Appl. Math., 83, Dekker, New York, 1983, 405–443 | MR | Zbl
[61] A. Aytuna, “Stein spaces $M$ for which $\mathscr O(M)$ is isomorphic to a power series space”, Advances in the theory of Fréchet spaces (Istanbul, 1988), NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., 287, Kluwer Acad. Publ., Dordrecht, 1989, 115–154 | MR | Zbl
[62] V. P. Palamodov, “On the Liouville property of section spaces of coherent analytic sheaves”, Functional analysis (Essen, 1991), Lecture Notes in Pure and Appl. Math., 150, Dekker, New York, 1994, 459–473 | MR | Zbl
[63] F. Prosmans, “Derived categories for functional analysis”, Publ. Res. Inst. Math. Sci., 36:1 (2000), 19–83 | DOI | MR | Zbl
[64] D. Vogt, “On the functors $\operatorname{Ext}^1(E,F)$ for Fréchet spaces”, Studia Math., 85:2 (1987), 163–197 | MR | Zbl
[65] J. Wengenroth, Derived functors in functional analysis, Lecture Notes in Math., 1810, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[66] D. Vogt, M. J. Wagner, “Charakterisierung der Quotientenräume von $s$ und eine Vermutung von Martineau”, Studia Math., 67:3 (1980), 225–240 | MR | Zbl
[67] H. Bass, Algebraic $K$-theory, Benjamin, New York–Amsterdam, 1968 | MR | MR | Zbl | Zbl
[68] A. Yu. Pirkovskii, “Injective topological modules, additivity formulas for homological dimensions and related topics”, Topological homology, Nova Sci. Publ., Huntington, 2000, 93–143 | MR | Zbl
[69] J. Hubbard, “Transversalité”, Quelques problèmes de modules, 16 (Paris, 1971–1972), Soc. Math. France, Paris, 1974, 33–48 | MR | Zbl
[70] R. G. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105 (1962), 264–277 | DOI | MR | Zbl
[71] W. Greub, S. Halperin, R. Vanstone, Connections, curvature, and cohomology, v. I, De Rham cohomology of manifolds and vector bundles, Academic Press, New York–London, 1972 | MR | Zbl
[72] M. Farinati, “Hochschild duality, localization, and smash products”, J. Algebra, 284:1 (2005), 415–434 | DOI | MR | Zbl
[73] V. A. Artamonov, “Quantum polynomial algebras”, J. Math. Sci. (New York), 87:3 (1997), 3441–3462 | DOI | MR | Zbl
[74] K. R. Goodearl, “Quantized coordinate rings and related Noetherian algebras”, Proceedings of the 35th Symposium on Ring Theory and Representation Theory (Okayama, 2002), Okayama, 2003, 19–45 | MR
[75] M. Wambst, “Hochschild and cyclic homology of the quantum multiparametric torus”, J. Pure Appl. Algebra, 114:3 (1997), 321–329 | DOI | MR | Zbl
[76] M. Wambst, “Complexes de Koszul quantiques”, Ann. Inst. Fourier (Grenoble), 43:4 (1993), 1089–1156 | DOI | MR | Zbl
[77] A. W. Knapp, Lie groups, Lie algebras, and cohomology, Math. Notes, 34, Princeton Univ. Press, Princeton, NJ, 1988 | MR | Zbl
[78] K. R. Goodearl, E. S. Letzter, “Quantum $n$-space as a quotient of classical $n$-space”, Trans. Amer. Math. Soc., 352:12 (2000), 5855–5876 | DOI | MR | Zbl
[79] R. Nest, “Cyclic cohomology of noncommutative tori”, Canad. J. Math., 40:5 (1988), 1046–1057 | DOI | MR
[80] L. A. Takhtadzhyan, “Noncommutative homology of quantum tori”, Funct. Anal. Appl., 23:2 (1989), 147–149 | DOI | MR | Zbl
[81] J. A. Guccione, J. J. Guccione, “Hochschild homology of some quantum algebras”, J. Pure Appl. Algebra, 132:2 (1998), 129–147 | DOI | MR | Zbl
[82] A. Grothendieck, “Produits tensoriels topologiques et espaces nucléaires”, Mem. Amer. Math. Soc., 1955, no. 16 | MR | Zbl