Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_4_a0, author = {S. A. Bogatyi and V. V. Redkozubov}, title = {On almost-periodic points of a~topological {Markov} chain}, journal = {Izvestiya. Mathematics }, pages = {647--668}, publisher = {mathdoc}, volume = {76}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/} }
S. A. Bogatyi; V. V. Redkozubov. On almost-periodic points of a~topological Markov chain. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 647-668. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/
[1] W. Parry, “Intrinsic Markov chains”, Trans. Amer. Math. Soc., 112 (1964), 55–66 | DOI | MR | Zbl
[2] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[3] X. D. Ye, “$D$-function of a minimal set and an extension of Sharkovskii's theorem to minimal sets”, Ergodic Theory Dynam. Systems, 12:2 (1992), 365–376 | DOI | MR | Zbl
[4] A. I. Demin, “Coexistence of periodic, almost periodic and recurrent points for transformations of $n$-od”, Moscow Univ. Math. Bull., 51:3 (1996), 46–48 | MR | Zbl
[5] V. V. Redkozubov, O predelnykh mnozhestvakh otobrazhenii grafov, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2005
[6] I. K. Babenko, S. A. Bogatyǐ, “The behavior of the index of periodic points under iterations of a mapping”, Math. USSR-Izv., 38:1 (1992), 1–26 | DOI | MR | Zbl
[7] J. L. Ramirez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005 | MR | Zbl
[8] A. L. Dulmage, N. S. Mendelsohn, “Gaps in the exponent set of primitive matrices”, Illinois J. Math., 8 (1964), 642–656 | MR | Zbl
[9] G. A. Hedlund, “Sturmian minimal sets”, Amer. J. Math., 66 (1944), 605–620 | DOI | MR | Zbl