On almost-periodic points of a~topological Markov chain
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 647-668.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a transitive topological Markov chain has almost-periodic points of all $D$-periods. Moreover, every $D$-period is realized by continuously many distinct minimal sets. We give a simple constructive proof of the result which asserts that any transitive topological Markov chain has periodic points of almost all periods, and study the structure of the finite set of positive integers that are not periods.
Keywords: transitive topological Markov chain, periodic point, almost-periodic point, minimal set.
@article{IM2_2012_76_4_a0,
     author = {S. A. Bogatyi and V. V. Redkozubov},
     title = {On almost-periodic points of a~topological {Markov} chain},
     journal = {Izvestiya. Mathematics },
     pages = {647--668},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/}
}
TY  - JOUR
AU  - S. A. Bogatyi
AU  - V. V. Redkozubov
TI  - On almost-periodic points of a~topological Markov chain
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 647
EP  - 668
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/
LA  - en
ID  - IM2_2012_76_4_a0
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%A V. V. Redkozubov
%T On almost-periodic points of a~topological Markov chain
%J Izvestiya. Mathematics 
%D 2012
%P 647-668
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/
%G en
%F IM2_2012_76_4_a0
S. A. Bogatyi; V. V. Redkozubov. On almost-periodic points of a~topological Markov chain. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 647-668. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/

[1] W. Parry, “Intrinsic Markov chains”, Trans. Amer. Math. Soc., 112 (1964), 55–66 | DOI | MR | Zbl

[2] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[3] X. D. Ye, “$D$-function of a minimal set and an extension of Sharkovskii's theorem to minimal sets”, Ergodic Theory Dynam. Systems, 12:2 (1992), 365–376 | DOI | MR | Zbl

[4] A. I. Demin, “Coexistence of periodic, almost periodic and recurrent points for transformations of $n$-od”, Moscow Univ. Math. Bull., 51:3 (1996), 46–48 | MR | Zbl

[5] V. V. Redkozubov, O predelnykh mnozhestvakh otobrazhenii grafov, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2005

[6] I. K. Babenko, S. A. Bogatyǐ, “The behavior of the index of periodic points under iterations of a mapping”, Math. USSR-Izv., 38:1 (1992), 1–26 | DOI | MR | Zbl

[7] J. L. Ramirez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005 | MR | Zbl

[8] A. L. Dulmage, N. S. Mendelsohn, “Gaps in the exponent set of primitive matrices”, Illinois J. Math., 8 (1964), 642–656 | MR | Zbl

[9] G. A. Hedlund, “Sturmian minimal sets”, Amer. J. Math., 66 (1944), 605–620 | DOI | MR | Zbl