On almost-periodic points of a~topological Markov chain
Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 647-668
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a transitive topological Markov chain has almost-periodic points
of all $D$-periods. Moreover, every $D$-period is realized by continuously many
distinct minimal sets. We give a simple constructive proof of the result
which asserts that any transitive topological Markov chain has periodic points
of almost all periods, and study the structure of the finite set of positive
integers that are not periods.
Keywords:
transitive topological Markov chain, periodic point, almost-periodic point, minimal set.
@article{IM2_2012_76_4_a0,
author = {S. A. Bogatyi and V. V. Redkozubov},
title = {On almost-periodic points of a~topological {Markov} chain},
journal = {Izvestiya. Mathematics },
pages = {647--668},
publisher = {mathdoc},
volume = {76},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/}
}
S. A. Bogatyi; V. V. Redkozubov. On almost-periodic points of a~topological Markov chain. Izvestiya. Mathematics , Tome 76 (2012) no. 4, pp. 647-668. http://geodesic.mathdoc.fr/item/IM2_2012_76_4_a0/