Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics
Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 626-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on the exact asymptotics as $T \to \infty$ of the integrals $\mathsf{E}\bigl[\frac{1}{T}\!\int_0^T\!|\eta(t)|^pdt\bigr]^{-T}$, $p>0$, for two stochastic processes $\xi(t)$, the Wiener process and the Brownian bridge, as well as for their conditional versions. We also obtain a number of related results. We shall use the Laplace method for the occupation times of homogeneous Markov processes. We write the constants in our exact asymptotic formulae explicitly in terms of the minimal eigenvalue and corresponding eigenfunction for the Schrödinger operator with a potential of polynomial type.
Keywords: large deviations, occupaton time of Markov processes, Schrödinger operator, action functional, Fréchet differentiation.
@article{IM2_2012_76_3_a8,
     author = {V. R. Fatalov},
     title = {Negative-order moments for $L^p$-functionals of {Wiener} processes: exact asymptotics},
     journal = {Izvestiya. Mathematics },
     pages = {626--646},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 626
EP  - 646
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/
LA  - en
ID  - IM2_2012_76_3_a8
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics
%J Izvestiya. Mathematics 
%D 2012
%P 626-646
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/
%G en
%F IM2_2012_76_3_a8
V. R. Fatalov. Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 626-646. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/

[1] L. A. Shepp, “On the integral of the absolute value of the pinned Wiener process”, Ann. Probab., 10:1 (1982), 234–239 ; 19:3 (1991), 1397 | DOI | MR | Zbl | DOI | MR

[2] S. O. Rice, “The integral of the absolute value of the pinned Wiener process – calculation of its probability density by numerical integration”, Ann. Probab., 10:1 (1982), 240–243 | DOI | MR | Zbl

[3] L. Takács, “On the distribution of the integral of the absolute value of the Brownian motion”, Ann. Appl. Probab., 3:1 (1993), 186–197 | DOI | MR | Zbl

[4] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl

[5] B. Simon, Functional integration and quantum physics, Pure Appl. Math., 86, Academic Press, New York–London, 1979 | MR | Zbl

[6] E. Brézin, J. C. Le Guillou, J. Zinn-Justin, “Perturbation theory at large order. I. The $\varphi^{2n}$ interaction”, Phys. Rev. D, 15:6 (1977), 1544–1557 | DOI

[7] D. P. Sankovich, “The Bogolyubov functional integral”, Proc. Steklov Inst. Math., 251 (2005), 213–245 | MR | Zbl

[8] M. Kac, Probability and related topics in physical sciences, Interscience Publ., New York, 1959 | MR | Zbl | Zbl

[9] V. R. Fatalov, “Momenty $ L^p$-funktsionalov ot gaussovskikh protsessov: tochnye asimptotiki”, Problemy peredachi informatsii (to appear)

[10] V. R. Fatalov, “Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure”, Theoret. and Math. Phys., 168:2 (2011), 1112–1149 | DOI

[11] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995 | MR | Zbl | Zbl

[12] V. R. Fatalov, “Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields”, Russian Math. Surveys, 58:4 (2003), 725–772 | DOI | MR | Zbl

[13] V. R. Fatalov, “The Laplace method for small deviations of Gaussian processes of Wiener type”, Sb. Math., 196:4 (2005), 595–620 | DOI | MR | Zbl

[14] V. R. Fatalov, “Small deviations for two classes of Gaussian stationary processes and $L^p$-functionals, $0

\le\infty$”, Problems Inform. Transmission, 46:1 (2010), 62–85 | DOI | MR | Zbl

[15] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals. I. Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 ; “II: Manifold of minimum points”, Comm. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl | DOI | MR | Zbl

[16] Sh. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl

[17] V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239 | DOI | MR | Zbl

[18] S. Albeverio, V. Fatalov, V. Piterbarg, “Asymptotic behavior of the sample mean of a function of the Wiener process and the Macdonald function”, J. Math. Sci. Univ. Tokyo, 16:1 (2009), 55–93 | MR | Zbl

[19] V. R. Fatalov, “Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method”, Izv. Math., 75:4 (2011), 837–868 | DOI | Zbl

[20] G. F. Votruba, L. F. Boron (eds.), Functional analysis, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl

[21] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York–London, 1974 | MR | MR | Zbl | Zbl

[22] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl

[23] T. Hida, Brownian motion, Springer-Verlag, New York–Heidelberg–Berlin, 1980 | MR | MR | Zbl | Zbl

[24] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000

[25] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl

[26] A. N. Borodin, I. A. Ibragimov, Limit theorems for functionals of random walks, Proc. Steklov Inst. Math., Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl | Zbl

[27] M. Fukushima, M. Takeda, “A transformation of a symmetric Markov process and the Donsker–Varadhan theory”, Osaka J. Math., 21:2 (1984), 311–326 | MR | Zbl

[28] M. Fukushima, Dirichlet forms and Markov processes, North-Holland Math. Library, 23, North-Holland, Amsterdam–Oxford–New York, 1980 | MR | Zbl

[29] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, 19, Springer-Verlag, Berlin, 1994 | MR | Zbl

[30] H. Cramer, M. R. Leadbetter, Stationary and related stochastic processes, Wiley, New York–London–Sydney, 1967 | MR | Zbl | Zbl

[31] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl | Zbl

[32] R. S. Ellis, J. S. Rosen, “Laplace's method for Gaussian integrals with an application to statistical mechanics”, Ann. Probab., 10:1 (1982), 47–66 ; 11:2 (1983), 456 | DOI | MR | Zbl | DOI

[33] H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., 463, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl

[34] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987 | MR | MR | Zbl | Zbl

[35] J. Kerstan, K. Matthes, J. Mecke, Unbegrenzt teilbare Punktprozesse, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl | Zbl

[36] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[37] M. A. Neumark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960 | MR | MR | Zbl

[38] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 1: Funktsionalnyi analiz, Mir, M., 1977 ; т. 2: Гармонический анализ. Самосопряженность, 1978 ; M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York–London, 1972 ; II. Fourier analysis, self-adjointness, 1975 | MR | MR | MR | Zbl | MR | Zbl

[39] M. M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press, New York–Toronto, 1973 | MR | MR | Zbl | Zbl

[40] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl

[41] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003

[42] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996 | MR | Zbl

[43] E. Kamke, Differentialgleichungen, Stuttgart, Teubner, 1977 | MR | MR | Zbl | Zbl