Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_3_a8, author = {V. R. Fatalov}, title = {Negative-order moments for $L^p$-functionals of {Wiener} processes: exact asymptotics}, journal = {Izvestiya. Mathematics }, pages = {626--646}, publisher = {mathdoc}, volume = {76}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/} }
V. R. Fatalov. Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 626-646. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/
[1] L. A. Shepp, “On the integral of the absolute value of the pinned Wiener process”, Ann. Probab., 10:1 (1982), 234–239 ; 19:3 (1991), 1397 | DOI | MR | Zbl | DOI | MR
[2] S. O. Rice, “The integral of the absolute value of the pinned Wiener process – calculation of its probability density by numerical integration”, Ann. Probab., 10:1 (1982), 240–243 | DOI | MR | Zbl
[3] L. Takács, “On the distribution of the integral of the absolute value of the Brownian motion”, Ann. Appl. Probab., 3:1 (1993), 186–197 | DOI | MR | Zbl
[4] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999 | MR | Zbl
[5] B. Simon, Functional integration and quantum physics, Pure Appl. Math., 86, Academic Press, New York–London, 1979 | MR | Zbl
[6] E. Brézin, J. C. Le Guillou, J. Zinn-Justin, “Perturbation theory at large order. I. The $\varphi^{2n}$ interaction”, Phys. Rev. D, 15:6 (1977), 1544–1557 | DOI
[7] D. P. Sankovich, “The Bogolyubov functional integral”, Proc. Steklov Inst. Math., 251 (2005), 213–245 | MR | Zbl
[8] M. Kac, Probability and related topics in physical sciences, Interscience Publ., New York, 1959 | MR | Zbl | Zbl
[9] V. R. Fatalov, “Momenty $ L^p$-funktsionalov ot gaussovskikh protsessov: tochnye asimptotiki”, Problemy peredachi informatsii (to appear)
[10] V. R. Fatalov, “Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure”, Theoret. and Math. Phys., 168:2 (2011), 1112–1149 | DOI
[11] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995 | MR | Zbl | Zbl
[12] V. R. Fatalov, “Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields”, Russian Math. Surveys, 58:4 (2003), 725–772 | DOI | MR | Zbl
[13] V. R. Fatalov, “The Laplace method for small deviations of Gaussian processes of Wiener type”, Sb. Math., 196:4 (2005), 595–620 | DOI | MR | Zbl
[14] V. R. Fatalov, “Small deviations for two classes of Gaussian stationary processes and $L^p$-functionals, $0
\le\infty$”, Problems Inform. Transmission, 46:1 (2010), 62–85 | DOI | MR | Zbl[15] R. S. Ellis, J. S. Rosen, “Asymptotic analysis of Gaussian integrals. I. Isolated minimum points”, Trans. Amer. Math. Soc., 273:2 (1982), 447–481 ; “II: Manifold of minimum points”, Comm. Math. Phys., 82:2 (1981), 153–181 | DOI | MR | Zbl | DOI | MR | Zbl
[16] Sh. Kusuoka, Y. Tamura, “Precise estimate for large deviation of Donsker–Varadhan type”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:3 (1991), 533–565 | MR | Zbl
[17] V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239 | DOI | MR | Zbl
[18] S. Albeverio, V. Fatalov, V. Piterbarg, “Asymptotic behavior of the sample mean of a function of the Wiener process and the Macdonald function”, J. Math. Sci. Univ. Tokyo, 16:1 (2009), 55–93 | MR | Zbl
[19] V. R. Fatalov, “Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method”, Izv. Math., 75:4 (2011), 837–868 | DOI | Zbl
[20] G. F. Votruba, L. F. Boron (eds.), Functional analysis, Wolters-Noordhoff Publ., Groningen, 1972 | MR | MR | Zbl
[21] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York–London, 1974 | MR | MR | Zbl | Zbl
[22] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl
[23] T. Hida, Brownian motion, Springer-Verlag, New York–Heidelberg–Berlin, 1980 | MR | MR | Zbl | Zbl
[24] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu, Lan, SPb., 2000
[25] M. D. Donsker, S. R. S. Varadhan, “Asymptotic evaluation of certain Markov process expectations for large time. III”, Comm. Pure Appl. Math., 29:4 (1976), 389–461 | DOI | MR | Zbl
[26] A. N. Borodin, I. A. Ibragimov, Limit theorems for functionals of random walks, Proc. Steklov Inst. Math., Amer. Math. Soc., Providence, RI, 1995 | MR | Zbl | Zbl
[27] M. Fukushima, M. Takeda, “A transformation of a symmetric Markov process and the Donsker–Varadhan theory”, Osaka J. Math., 21:2 (1984), 311–326 | MR | Zbl
[28] M. Fukushima, Dirichlet forms and Markov processes, North-Holland Math. Library, 23, North-Holland, Amsterdam–Oxford–New York, 1980 | MR | Zbl
[29] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, 19, Springer-Verlag, Berlin, 1994 | MR | Zbl
[30] H. Cramer, M. R. Leadbetter, Stationary and related stochastic processes, Wiley, New York–London–Sydney, 1967 | MR | Zbl | Zbl
[31] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl | Zbl
[32] R. S. Ellis, J. S. Rosen, “Laplace's method for Gaussian integrals with an application to statistical mechanics”, Ann. Probab., 10:1 (1982), 47–66 ; 11:2 (1983), 456 | DOI | MR | Zbl | DOI
[33] H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math., 463, Springer-Verlag, Berlin–New York, 1975 | DOI | MR | Zbl
[34] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987 | MR | MR | Zbl | Zbl
[35] J. Kerstan, K. Matthes, J. Mecke, Unbegrenzt teilbare Punktprozesse, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl | Zbl
[36] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl
[37] M. A. Neumark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960 | MR | MR | Zbl
[38] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 1: Funktsionalnyi analiz, Mir, M., 1977 ; т. 2: Гармонический анализ. Самосопряженность, 1978 ; M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York–London, 1972 ; II. Fourier analysis, self-adjointness, 1975 | MR | MR | MR | Zbl | MR | Zbl
[39] M. M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press, New York–Toronto, 1973 | MR | MR | Zbl | Zbl
[40] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl
[41] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2003
[42] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996 | MR | Zbl
[43] E. Kamke, Differentialgleichungen, Stuttgart, Teubner, 1977 | MR | MR | Zbl | Zbl