Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics
Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 626-646

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove theorems on the exact asymptotics as $T \to \infty$ of the integrals $\mathsf{E}\bigl[\frac{1}{T}\!\int_0^T\!|\eta(t)|^pdt\bigr]^{-T}$, $p>0$, for two stochastic processes $\xi(t)$, the Wiener process and the Brownian bridge, as well as for their conditional versions. We also obtain a number of related results. We shall use the Laplace method for the occupation times of homogeneous Markov processes. We write the constants in our exact asymptotic formulae explicitly in terms of the minimal eigenvalue and corresponding eigenfunction for the Schrödinger operator with a potential of polynomial type.
Keywords: large deviations, occupaton time of Markov processes, Schrödinger operator, action functional, Fréchet differentiation.
@article{IM2_2012_76_3_a8,
     author = {V. R. Fatalov},
     title = {Negative-order moments for $L^p$-functionals of {Wiener} processes: exact asymptotics},
     journal = {Izvestiya. Mathematics },
     pages = {626--646},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 626
EP  - 646
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/
LA  - en
ID  - IM2_2012_76_3_a8
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics
%J Izvestiya. Mathematics 
%D 2012
%P 626-646
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/
%G en
%F IM2_2012_76_3_a8
V. R. Fatalov. Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 626-646. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a8/