The Cauchy problem for a~degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data
Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 563-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a degenerate parabolic equation of the form $\rho(x) u_t=\operatorname{div}(u^{m-1}|Du|^{\lambda-1}Du)+\rho(x)u^p$ with a source and inhomogeneous density, we consider the Cauchy problem with an initial function slowly tending to zero as $|x| \to \infty$. We find conditions for the global-in-time existence or non-existence of solutions of this problem. These conditions depend essentially on the behaviour of the initial data as $|x|\to \infty$. In the case of global solubility we obtain a sharp estimate of the solution for large values of time.
Keywords: inhomogeneous density, degenerate parabolic equation, blow-up, slowly decaying initial function.
@article{IM2_2012_76_3_a5,
     author = {A. V. Martynenko and An. F. Tedeev and V. N. Shramenko},
     title = {The {Cauchy} problem for a~degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data},
     journal = {Izvestiya. Mathematics },
     pages = {563--580},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a5/}
}
TY  - JOUR
AU  - A. V. Martynenko
AU  - An. F. Tedeev
AU  - V. N. Shramenko
TI  - The Cauchy problem for a~degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 563
EP  - 580
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a5/
LA  - en
ID  - IM2_2012_76_3_a5
ER  - 
%0 Journal Article
%A A. V. Martynenko
%A An. F. Tedeev
%A V. N. Shramenko
%T The Cauchy problem for a~degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data
%J Izvestiya. Mathematics 
%D 2012
%P 563-580
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a5/
%G en
%F IM2_2012_76_3_a5
A. V. Martynenko; An. F. Tedeev; V. N. Shramenko. The Cauchy problem for a~degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 563-580. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a5/

[1] S. Kaplan, “On the growth of solutions of quasi-linear parabolic equations”, Comm. Pure Appl. Math., 16:3 (1963), 305–330 | DOI | MR | Zbl

[2] H. Fujita, “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124 | MR | Zbl

[3] V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhajlov, A. A. Samarskij, “Unbounded solutions of the Cauchy problem for the parabolic equation $u_t=\nabla (u^\sigma \nabla u) u+u^{\beta}$”, Soviet Phys. Dokl., 25 (1980), 458–459 | MR | Zbl

[4] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl

[5] D. Andreucci, E. Di Benedetto, “On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 18:3 (1991), 363–441 | MR | Zbl

[6] V. A. Galaktionov, “Blow-up for quasilinear heat equations with critical Fujita's exponents”, Proc. Roy. Soc. Edinburgh Sect. A, 124:3 (1994), 517–525 | DOI | MR | Zbl

[7] Y. Qi, “The critical exponents of parabolic equations and blow-up in $\mathbb{R}^n$”, Proc. Roy. Soc. Edinburgh Sect. A, 128:1 (1998), 123–136 | DOI | MR | Zbl

[8] V. A. Galaktionov, H. A. Levine, “A general approach to critical Fujita exponents in nonlinear parabolic problems”, Nonlinear Anal., 34:7 (1998), 1005–1027 | DOI | MR | Zbl

[9] D. Andreucci, A. F. Tedeev, “A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary”, J. Math. Anal. Appl., 231:2 (1999), 543–567 | DOI | MR | Zbl

[10] H. A. Levine, “The role of critical exponents in blowup theorems”, SIAM Rev., 32:2 (1990), 262–288 | DOI | MR | Zbl

[11] K. Deng, H. A. Levine, “The role of critical exponents in blow-up theorems: the sequel”, J. Math. Anal. Appl., 243:1 (2000), 85–126 | DOI | MR | Zbl

[12] A. V. Martynenko, A. F. Tedeev, “On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source”, Comput. Math. Math. Phys., 48:7 (2008), 1145–1160 | DOI

[13] P. Rosenau, S. Kamin, “Non-linear diffusion in a finite mass medium”, Comm. Pure Appl. Math., 35:1 (1982), 113–127 | DOI | MR | Zbl

[14] S. Kamin, P. Rosenau, “Propagation of thermal waves in an inhomogeneous medium”, Comm. Pure Appl. Math., 34:6 (1981), 831–852 | DOI | MR | Zbl

[15] S. Kamin, R. Kersner, “Disappearance of interfaces in finite time”, Meccanica, 28:2 (1993), 117–120 | DOI | Zbl

[16] M. Guedda, D. Hilhorst, M. A. Peletier, “Disappearing interfaces in nonlinear diffusion”, Adv. Math. Sci. Appl., 7:2 (1997), 695–710 | MR | Zbl

[17] V. A. Galaktionov, J. R. King, “On the behaviour of blow-up interfaces for an inhomogeneous filtration equation”, IMA J. Appl. Math., 57:1 (1996), 53–77 | MR | Zbl

[18] R. Kersner, G. Reyes, A. Tesei, “On a class of parabolic equations with variable density and absorption”, Adv. Differential Equations, 7:2 (2002), 155–176 | MR | Zbl

[19] V. A. Galaktionov, S. Kamin, R. Kersner, J. L. Vazquez, “Intermediate asymptotics for inhomogeneous nonlinear heat conduction”, J. Math. Sci., 120:3 (2004), 1277–1294 | DOI | MR | Zbl

[20] A. F. Tedeev, “Conditions for the time global existence and nonexistence of a compact support of solutions to the Cauchy problem for quasilinear degenerate parabolic equations”, Siberian Math. J., 45:1 (2004), 155–164 | DOI | MR | Zbl

[21] A. F. Tedeev, “The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations”, Appl. Anal., 86:6 (2007), 755–782 | DOI | MR | Zbl

[22] K. Mukai, K. Mochuzuki, Q. Huang, “Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values”, Nonlinear Anal., 39:1 (2000), 33–45 | DOI | MR | Zbl

[23] N. V. Afanasieva, A. F. Tedeev, “Fujita type theorems for quasilinear parabolic equations with initial data slowly decaying to zero”, Sb. Math., 195:4 (2004), 459–478 | DOI | MR | Zbl

[24] D. Andreucci, A. F. Tedeev, “Universal bounds at the blow-up time for nonlinear parabolic equations”, Adv. Differential Equations, 10:1 (2005), 89–120 | MR | Zbl

[25] D. Andreucci, “Degenerate parabolic equations with initial data measures”, Trans. Amer. Math. Soc., 340:10 (1997), 3911–3923 | DOI | MR | Zbl

[26] F. Bernis, “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl

[27] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[28] A. V. Martynenko, A. F. Tedeev, “Regularity of solutions of degenerate parabolic equations with nonhomogeneous density”, Ukr. Math. Bull., 5:1 (2008), 117–145 | MR