The average number of relative minima of three-dimensional integer lattices of a~given determinant
Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 535-562
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an asymptotic formula for the average number of relative minima of the
three-dimensional complete integer lattices of a given determinant.
This generalizes Heilbronn's classical result on the average length of a finite
continued fraction with a fixed denominator.
Keywords:
relative minimum, multidimensional continued fraction, average length of continued fractions.
@article{IM2_2012_76_3_a4,
author = {A. A. Illarionov},
title = {The average number of relative minima of three-dimensional integer lattices of a~given determinant},
journal = {Izvestiya. Mathematics },
pages = {535--562},
publisher = {mathdoc},
volume = {76},
number = {3},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a4/}
}
TY - JOUR AU - A. A. Illarionov TI - The average number of relative minima of three-dimensional integer lattices of a~given determinant JO - Izvestiya. Mathematics PY - 2012 SP - 535 EP - 562 VL - 76 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a4/ LA - en ID - IM2_2012_76_3_a4 ER -
A. A. Illarionov. The average number of relative minima of three-dimensional integer lattices of a~given determinant. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 535-562. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a4/