Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_3_a3, author = {A. G. Dyakonov}, title = {Criteria for the singularity of a~pairwise $l_1$-distance matrix and their generalizations}, journal = {Izvestiya. Mathematics }, pages = {517--534}, publisher = {mathdoc}, volume = {76}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a3/} }
A. G. Dyakonov. Criteria for the singularity of a~pairwise $l_1$-distance matrix and their generalizations. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 517-534. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a3/
[1] B. J. C. Baxter, “Conditionally positive functions and $p$-norm distance matrices”, Constr. Approx., 7:1 (1991), 427–440 | DOI | MR | Zbl
[2] L. Reid, X. Sun, “Distance matrices and ridge function interpolation”, Canad. J. Math., 45:6 (1993), 1313–1323 | DOI | MR | Zbl
[3] I. J. Schoenberg, “On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space”, Ann. of Math. (2), 38:4 (1937), 787–793 | DOI | MR | Zbl
[4] I. J. Schoenberg, “Metric spaces and positive definite functions”, Trans. Amer. Math. Soc., 44:3 (1938), 522–536 | DOI | MR | Zbl
[5] I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:4 (1938), 811–841 | DOI | MR | Zbl
[6] N. Dyn, W. A. Light, E. W. Cheney, “Interpolation by piecewise-linear radial basis functions. I”, J. Approx. Theory, 59:2 (1989), 202–223 | DOI | MR | Zbl
[7] S. P. Diliberto, E. G. Straus, “On the approximation of a function of several variables by the sum of functions of fewer variables”, Pacific J. Math., 1 (1951), 195–210 | MR | Zbl
[8] V. I. Arnol'd, “On functions of three variables”, Amer. Math. Soc. Transl. (2), 28 (1963), 51–54 | MR | MR | Zbl | Zbl
[9] W. A. Light, “The singularity of distance matrices”, Multivariate approximation theory (Oberwolfach, 1989), v. IV, Internat. Ser. Numer. Math., 90, Birkhaüser, Basel, 1989, 233–240 | MR | Zbl
[10] A. G. D'yakonov, “Correctness criteria for algebraic closures of the estimate-calculating algorithm model”, Dokl. Math., 77:3 (2008), 453–456 | DOI | MR | Zbl
[11] Yu. I. Zhuravlev, “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33 (1978), 5–68 | MR | Zbl
[12] Yu. I. Zhuravlev, “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. II”, Kibernetika, 6 (1977), 21–27 | MR | Zbl
[13] D. Braess, A. Pinkus, “Interpolation by ridge functions”, J. Approx. Theory, 73:2 (1993), 218–236 | DOI | MR | Zbl
[14] A. G. D'yakonov, “Necessary and sufficient conditions for the singularity of the pairwise $l_1$-distance matrix and their generalizations”, Dokl. Math., 79:2 (2009), 150–152 | DOI | MR | Zbl
[15] M. M. Deza, M. Laurent, Geometry of cuts and metrics, Algorithms Combin., 15, Springer-Verlag, Berlin, 1997 | MR | Zbl
[16] A. G. D'yakonov, “Theory of equivalence systems for describing the algebraic closures of a generalized estimation model”, Comput. Math. Math. Phys., 50:2 (2010), 369–381 | DOI | MR | Zbl
[17] A. G. D'yakonov, “Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II”, Comput. Math. Math. Phys., 51:3 (2011), 490–504 | DOI | MR
[18] A. G. D'yakonov, “Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes”, Comput. Math. Math. Phys., 48:5 (2008), 866–876 | DOI | MR | Zbl
[19] K. V. Rudakov, Algebraicheskaya teoriya universalnykh i lokalnykh ogranichenii dlya algoritmov raspoznavaniya, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs RAN, M., 1992 http://www.ccas.ru/frc/thesis/RudakovDocDisser.pdf
[20] A. G. Dyakonov, Algebra nad algoritmami vychisleniya otsenok, Uchebnoe posobie, Izdatelskii otdel f-ta VMiK MGU im. M.V. Lomonosova, M., 2006
[21] P. A. Karpovich, “Criteria of the $k$-singularity and division of 1-singular systems”, Moscow Univ. Comput. Math. Cybernet., 34:4 (2010), 164–171 | DOI | MR
[22] S. V. Yablonsky, Introduction to discrete mathematics, Mir, Moscow, 1989 | MR | MR | Zbl | Zbl