Criteria for the singularity of a~pairwise $l_1$-distance matrix and their generalizations
Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 517-534.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the singularity problem for the pairwise distance matrix of a system of points, as well as generalizations of this problem that are connected with applications to interpolation theory and with an algebraic approach to recognition problems. We obtain necessary and sufficient conditions on a system under which the dimension of the range space of polynomials of bounded degree over the columns of the distance matrix is less than the number of points in the system.
Keywords: pairwise distance matrix, metric, correctness criteria, system of points.
Mots-clés : interpolation
@article{IM2_2012_76_3_a3,
     author = {A. G. Dyakonov},
     title = {Criteria for the singularity of a~pairwise $l_1$-distance matrix and their generalizations},
     journal = {Izvestiya. Mathematics },
     pages = {517--534},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a3/}
}
TY  - JOUR
AU  - A. G. Dyakonov
TI  - Criteria for the singularity of a~pairwise $l_1$-distance matrix and their generalizations
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 517
EP  - 534
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a3/
LA  - en
ID  - IM2_2012_76_3_a3
ER  - 
%0 Journal Article
%A A. G. Dyakonov
%T Criteria for the singularity of a~pairwise $l_1$-distance matrix and their generalizations
%J Izvestiya. Mathematics 
%D 2012
%P 517-534
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a3/
%G en
%F IM2_2012_76_3_a3
A. G. Dyakonov. Criteria for the singularity of a~pairwise $l_1$-distance matrix and their generalizations. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 517-534. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a3/

[1] B. J. C. Baxter, “Conditionally positive functions and $p$-norm distance matrices”, Constr. Approx., 7:1 (1991), 427–440 | DOI | MR | Zbl

[2] L. Reid, X. Sun, “Distance matrices and ridge function interpolation”, Canad. J. Math., 45:6 (1993), 1313–1323 | DOI | MR | Zbl

[3] I. J. Schoenberg, “On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space”, Ann. of Math. (2), 38:4 (1937), 787–793 | DOI | MR | Zbl

[4] I. J. Schoenberg, “Metric spaces and positive definite functions”, Trans. Amer. Math. Soc., 44:3 (1938), 522–536 | DOI | MR | Zbl

[5] I. J. Schoenberg, “Metric spaces and completely monotone functions”, Ann. of Math. (2), 39:4 (1938), 811–841 | DOI | MR | Zbl

[6] N. Dyn, W. A. Light, E. W. Cheney, “Interpolation by piecewise-linear radial basis functions. I”, J. Approx. Theory, 59:2 (1989), 202–223 | DOI | MR | Zbl

[7] S. P. Diliberto, E. G. Straus, “On the approximation of a function of several variables by the sum of functions of fewer variables”, Pacific J. Math., 1 (1951), 195–210 | MR | Zbl

[8] V. I. Arnol'd, “On functions of three variables”, Amer. Math. Soc. Transl. (2), 28 (1963), 51–54 | MR | MR | Zbl | Zbl

[9] W. A. Light, “The singularity of distance matrices”, Multivariate approximation theory (Oberwolfach, 1989), v. IV, Internat. Ser. Numer. Math., 90, Birkhaüser, Basel, 1989, 233–240 | MR | Zbl

[10] A. G. D'yakonov, “Correctness criteria for algebraic closures of the estimate-calculating algorithm model”, Dokl. Math., 77:3 (2008), 453–456 | DOI | MR | Zbl

[11] Yu. I. Zhuravlev, “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33 (1978), 5–68 | MR | Zbl

[12] Yu. I. Zhuravlev, “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. II”, Kibernetika, 6 (1977), 21–27 | MR | Zbl

[13] D. Braess, A. Pinkus, “Interpolation by ridge functions”, J. Approx. Theory, 73:2 (1993), 218–236 | DOI | MR | Zbl

[14] A. G. D'yakonov, “Necessary and sufficient conditions for the singularity of the pairwise $l_1$-distance matrix and their generalizations”, Dokl. Math., 79:2 (2009), 150–152 | DOI | MR | Zbl

[15] M. M. Deza, M. Laurent, Geometry of cuts and metrics, Algorithms Combin., 15, Springer-Verlag, Berlin, 1997 | MR | Zbl

[16] A. G. D'yakonov, “Theory of equivalence systems for describing the algebraic closures of a generalized estimation model”, Comput. Math. Math. Phys., 50:2 (2010), 369–381 | DOI | MR | Zbl

[17] A. G. D'yakonov, “Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II”, Comput. Math. Math. Phys., 51:3 (2011), 490–504 | DOI | MR

[18] A. G. D'yakonov, “Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes”, Comput. Math. Math. Phys., 48:5 (2008), 866–876 | DOI | MR | Zbl

[19] K. V. Rudakov, Algebraicheskaya teoriya universalnykh i lokalnykh ogranichenii dlya algoritmov raspoznavaniya, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs RAN, M., 1992 http://www.ccas.ru/frc/thesis/RudakovDocDisser.pdf

[20] A. G. Dyakonov, Algebra nad algoritmami vychisleniya otsenok, Uchebnoe posobie, Izdatelskii otdel f-ta VMiK MGU im. M.V. Lomonosova, M., 2006

[21] P. A. Karpovich, “Criteria of the $k$-singularity and division of 1-singular systems”, Moscow Univ. Comput. Math. Cybernet., 34:4 (2010), 164–171 | DOI | MR

[22] S. V. Yablonsky, Introduction to discrete mathematics, Mir, Moscow, 1989 | MR | MR | Zbl | Zbl