The thermodynamic formalism for the de~Rham function: increment method
Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 431-445

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the de Rham function: the unique continuous (nowhere differentiable) function $F \in L^1(\mathbb{R})$ with $\int F(x)\,dx=1$ satisfying the functional equation $F(x)=F(3x)+\frac{1}{3}\bigl(F(3x-1)+F(3x+1) \bigr)+\frac{2}{3}\bigl(F(3x-2)+F(3x+2)\bigr)$. We show that its pointwise Hölder regularity $\alpha(x)=\liminf_{h\to 0}\frac{\log(|F(x+h)-F(x)|)}{\log |h|}$ differs widely from point to point, and the values of $\alpha(x)$ fill an interval parametrizing the fractal sets $E^{(\alpha)}$, where $E^{(\alpha)}$ is the set of points $x$ with Hölder exponent $\alpha(x)=\alpha$. We also prove that the thermodynamic formalism (increment method) holds for the de Rham function: we have a heuristic formula $d(\alpha)=\inf_{q >0}(\alpha q-\zeta(q)+1)$ relating the order of decay of $\int_{\mathbb{R}}|F(x+h)-F(x)|^{q}\,dx \sim |h|^{\zeta(q)}$ as $h \to 0$ with the Hausdorff dimension $d(\alpha)$ of $E^{(\alpha)}$.
Keywords: Hölder regularity, thermodynamic formalism.
Mots-clés : Hausdorff dimension, increments
@article{IM2_2012_76_3_a0,
     author = {M. Ben Slimane},
     title = {The thermodynamic formalism for the {de~Rham} function: increment method},
     journal = {Izvestiya. Mathematics },
     pages = {431--445},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a0/}
}
TY  - JOUR
AU  - M. Ben Slimane
TI  - The thermodynamic formalism for the de~Rham function: increment method
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 431
EP  - 445
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a0/
LA  - en
ID  - IM2_2012_76_3_a0
ER  - 
%0 Journal Article
%A M. Ben Slimane
%T The thermodynamic formalism for the de~Rham function: increment method
%J Izvestiya. Mathematics 
%D 2012
%P 431-445
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a0/
%G en
%F IM2_2012_76_3_a0
M. Ben Slimane. The thermodynamic formalism for the de~Rham function: increment method. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 431-445. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a0/