Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_3_a0, author = {M. Ben Slimane}, title = {The thermodynamic formalism for the {de~Rham} function: increment method}, journal = {Izvestiya. Mathematics }, pages = {431--445}, publisher = {mathdoc}, volume = {76}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a0/} }
M. Ben Slimane. The thermodynamic formalism for the de~Rham function: increment method. Izvestiya. Mathematics , Tome 76 (2012) no. 3, pp. 431-445. http://geodesic.mathdoc.fr/item/IM2_2012_76_3_a0/
[1] R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, “On the multifractal nature of fully developed turbulence and chaotic systems”, J. Phys. A, 17:18 (1984), 3521–3531 | DOI | MR
[2] B. B. Mandelbrot, “Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier”, J. Fluid Mech., 62:2 (1974), 331–358 | DOI | Zbl
[3] J.-P.. Eckmann, D. Ruelle, “Ergodic theory of chaos and strange attractors”, Rev. Modern Phys., 57:3 (1985), 617–656 | DOI | MR | Zbl
[4] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, B. I. Shraiman, “Fractal measures and their singularities: the characterization of strange sets”, Phys. Rev. A (3), 33:2 (1986), 1141–1151 | DOI | MR | Zbl
[5] U. Frisch, G. Parisi, “Fully developped turbulence and intermittency”, Proc. Int. Summer school Phys. Enrico Fermi, North Holland, Amsterdam, 1985, 84–88
[6] E. Bacry, J. F. Muzy, A. Arnéodo, “Singularity spectrum of fractal signals from wavelet analysis: exact results”, J. Statist. Phys., 70:3–4 (1993), 635–674 | DOI | MR | Zbl
[7] J. Aouidi, M. Ben Slimane, “Multi-fractal formalism for quasi-self-similar functions”, J. Statist. Phys., 108:3–4 (2002), 541–590 | DOI | MR | Zbl
[8] S. Jaffard, “Multifractal formalism for functions. Part 1: Results valid for all functions; Part 2: Self-similar functions”, SIAM J. Math. Anal., 28:4 (1997), 944–998 | DOI | DOI | MR | MR | Zbl
[9] S. Jaffard, “On the Frisch–Parisi conjecture”, J. Math. Pures Appl. (9), 79:6 (2000), 525–552 | DOI | MR | Zbl
[10] A. Fraysse, “Generic validity of the multifractal formalism”, SIAM J. Math. Anal., 37:2 (2007), 593–607 | DOI | MR | Zbl
[11] I. Daubechies, J. C. Lagarias, “On the thermodynamic formalism for multifractal functions”, Rev. Math. Phys., 6:5A (1994), 1033–1070 | DOI | MR | Zbl
[12] G. De Rham, “Sur une courbe plane”, J. Math. Pures Appl. (9), 35 (1956), 25–42 | MR | Zbl
[13] G. De Rham, “Sur un exemple de fonction continue sans dérivée”, Enseignement Math. (2), 3 (1957), 71–72 | MR | Zbl
[14] I. Daubechies, J. C. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 22:4 (1992), 1031–1079 | DOI | MR | Zbl
[15] Y. Meyer, “Fonctions multifractales”, Ecole Normale Supérieure de Cachan, France
[16] S. Seuret, “On multifractality and time subordination for continuous functions”, Adv. Math., 220:3 (2009), 936–963 | DOI | MR | Zbl
[17] M. Ben Slimane, “Multifractal formalism for the generalized de Rham function”, Curr. Dev. Theory Appl. Wavelets, 2:1 (2008), 45–88 | MR | Zbl
[18] V. Yu. Protasov, “On the regularity of de Rham curves”, Izv. Math., 68:3 (2004), 567–606 | DOI | MR
[19] I. Daubechies, J. C. Lagarias, “Two-scale difference equations. I. Existence and global regularity of solutions”, SIAM J. Math. Anal., 22:5 (1991), 1388–1410 | DOI | MR | Zbl
[20] H. G. Eggleston, “The fractional dimension of a set defined by decimal properties”, Quart. J. Math., Oxford Ser., 20 (1949), 31–36 | DOI | MR | Zbl
[21] J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[22] K. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, New York, 1990 | MR | Zbl