Factorization semigroups and irreducible components of the Hurwitz space.~II
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 356-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the investigation started in [1]. Let $\mathrm{HUR}_{d,t}^{\mathcal S_d}(\mathbb P^1)$ be the Hurwitz space of coverings of degree $d$ of the projective line $\mathbb P^1$ with Galois group $\mathcal S_d$ and monodromy type $t$. The monodromy type is a set of local monodromy types, which are defined as conjugacy classes of permutations $\sigma$ in the symmetric group $\mathcal S_d$ acting on the set $I_d=\{1,\dots,d\}$. We prove that if the type $t$ contains sufficiently many local monodromies belonging to the conjugacy class $C$ of an odd permutation $\sigma$ which leaves $f_C\geqslant 2$ elements of $I_d$ fixed, then the Hurwitz space $\mathrm{HUR}_{d,t}^{\mathcal S_d}(\mathbb P^1)$ is irreducible.
Keywords: semigroup, factorizations of an element of a group, irreducible components of the Hurwitz space.
@article{IM2_2012_76_2_a5,
     author = {Vik. S. Kulikov},
     title = {Factorization semigroups and irreducible components of the {Hurwitz} {space.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {356--364},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a5/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Factorization semigroups and irreducible components of the Hurwitz space.~II
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 356
EP  - 364
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a5/
LA  - en
ID  - IM2_2012_76_2_a5
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Factorization semigroups and irreducible components of the Hurwitz space.~II
%J Izvestiya. Mathematics 
%D 2012
%P 356-364
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a5/
%G en
%F IM2_2012_76_2_a5
Vik. S. Kulikov. Factorization semigroups and irreducible components of the Hurwitz space.~II. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 356-364. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a5/

[1] V. S. Kulikov, “Factorization semigroups and irreducible components of the Hurwitz space”, Izv. Math., 75:4 (2011), 711–748 | DOI | Zbl

[2] B. Wajnryb, “Orbits of Hurwitz action for coverings of a sphere with two special fibers”, Indag. Math. (N.S.), 7:4 (1996), 549–558 | DOI | MR | Zbl