The far-field asymptotics of solutions of a~fractional non-linear equation
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 245-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the asymptotic behaviour of solutions of the Cauchy problem for a fractional non-linear equation. We show that the remainder term in the asymptotic formula is also the remainder in the far field, that is, as the spatial and temporal coordinates tend to infinity simultaneously. We also consider the case in which the Cauchy data are not small.
Keywords: far-field asymptotic behaviour, non-linear heat equation, critical non-linearity.
@article{IM2_2012_76_2_a1,
     author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
     title = {The far-field asymptotics of solutions of a~fractional non-linear equation},
     journal = {Izvestiya. Mathematics },
     pages = {245--274},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a1/}
}
TY  - JOUR
AU  - E. I. Kaikina
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - The far-field asymptotics of solutions of a~fractional non-linear equation
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 245
EP  - 274
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a1/
LA  - en
ID  - IM2_2012_76_2_a1
ER  - 
%0 Journal Article
%A E. I. Kaikina
%A P. I. Naumkin
%A I. A. Shishmarev
%T The far-field asymptotics of solutions of a~fractional non-linear equation
%J Izvestiya. Mathematics 
%D 2012
%P 245-274
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a1/
%G en
%F IM2_2012_76_2_a1
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. The far-field asymptotics of solutions of a~fractional non-linear equation. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 245-274. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a1/

[1] P. C. Fife, “Asymptotic states for equations of reaction and diffusion”, Bull. Amer. Math. Soc., 84:1 (1978), 693–726 | DOI | MR | Zbl

[2] S. Kamin, L. A. Peletier, “Large time behaviour of solutions of the heat equation with absorption”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12:3 (1985), 393–408 | MR | Zbl

[3] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Landau–Ginzburg type equations in the subcritical case”, Commun. Contemp. Math., 5:1 (2003), 127–145 | DOI | MR | Zbl

[4] A. M. Ilin, “O povedenii resheniya zadachi Koshi dlya parabolicheskogo uravneniya pri neogranichennom vozrastanii vremeni”, UMN, 16:2 (1961), 115–121 | MR | Zbl

[5] M. Escobedo, O. Kavian, H. Matano, “Large time behavior of solutions of a dissipative semilnear heat equation”, Comm. Partial Differential Equations, 20:7–8 (1995), 1427–1452 | DOI | MR | Zbl

[6] A. Gmira, L. Véron, “Large time behaviour of the solutions of a semilinear parabolic equation in $\mathbb{R}^{N}$”, J. Differential Equations, 53 (1984), 258–276 | DOI | MR | Zbl

[7] O. Kavian, “Remarks on the large time behaviour of a nonlinear diffusion equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4:5 (1987), 423–452 | MR | Zbl

[8] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Global existence and time decay of small solutions to the Landau–Ginzburg type equations”, J. Anal. Math., 90:1 (2003), 141–173 | DOI | MR | Zbl

[9] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[10] C. Bardos, P. Penel, U. Frisch, P. L. Sulem, “Modified dissipativity for a non-linear evolution equation arising in turbulence”, Arch. Rational Mech. Anal., 71:3 (1979), 237–256 | DOI | MR | Zbl

[11] P. Biler, T. Funaki, W. A. Woyczynski, “Fractal Burgers Equations”, J. Differential Equations, 148:1 (1998), 9–46 | DOI | MR | Zbl

[12] N. Hayashi, N. Ito, E. I. Kaikina, P. I. Naumkin, “On some nonlinear dissipative equations with sub-critical nonlinearities”, Taiwanese J. Math., 8:1 (2004), 135–154 | MR | Zbl

[13] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Large time behavior of solutions to the Landau-Ginzburg type equations”, Funkcial. Ekvac., 44:1 (2001), 171–200 | MR | Zbl

[14] T. Komatsu, “On the martingale problem for generators of stable processes with perturbations”, Osaka J. Math., 21:1 (1984), 113–132 | MR | Zbl

[15] C. J. Amick, J. L. Bona, M. E. Schonbek, “Decay of solutions of some nonlinear wave equations”, J. Differential Equations, 81:4 (1989), 1–49 | DOI | MR | Zbl

[16] J. L. Bona, L. Luo, “Decay of solutions to nonlinear, dispersive wave equations”, Differential Integral Equations, 6:5 (1993), 961–980 | MR | Zbl

[17] J. L. Bona, L. Luo, “More results on the decay of solutions to nonlinear, dispersive wave equations”, Discrete Contin. Dynam. Systems, 1:2 (1995), 151–193 | DOI | MR | Zbl

[18] D. B. Dix, “The dissipation of nonlinear dispersive waves: the case of asymptotically weak nonlinearity”, Comm. Partial Differential Equations, 17:9–10 (1992), 1665–1693 | DOI | MR | Zbl

[19] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[20] R. Prado, E. Zuazua, “Asymptotic expansion for the generalized Benjamin–Bona–Mahony–Burger equation”, Differential Integral Equations, 15:12 (2002), 1409–1434 | MR | Zbl

[21] M. E. Schonbek, “The Fourier splitting method”, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), Internat. Press., Cambridge, MA, 1995, 269–274 | MR | Zbl

[22] L. Zhang, “Decay of solutions of generalized Benjamin–Bona–Mahony equations”, Acta Math. Sinica (N.S.), 10:4 (1994), 428–438 | DOI | MR | Zbl

[23] H. Fujita, “On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124 | MR | Zbl

[24] F. B. Weissler, “Existence and nonexistence of global solutions for a semilinear heat equation”, Israel J. Math., 38:1–2 (1981), 29–40 | DOI | MR

[25] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=-Au+F(u)$”, Arch. Rational Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl

[26] K. Hayakawa, “On nonexistence of global solutions of some semilinear parabolic differential equations”, Proc. Japan Acad., 49 (1973), 503–505 | DOI | MR | Zbl

[27] K. Kobayashi, T. Sirao, H. Tanaka, “On the growing up problem for semilinear heat equations”, J. Math. Soc. Japan, 29:3 (1977), 407–424 | DOI | MR | Zbl

[28] S. Sugitani, “On nonexistence of global solutions for some nonlinear integral equations”, Osaka J. Math., 12 (1975), 45–51 | MR | Zbl

[29] M. Escobedo, E. Zuazua, “Large time behavior for convection-diffusion equations in $\mathbb{R}^{n}$”, J. Funct. Anal., 100:1 (1991), 119–161 | DOI | MR | Zbl

[30] P. Biler, G. Karch, W. A. Woyczyński, “Asymptotics for conservation laws involving Lévy diffusion generators”, Studia Math., 148:2 (2001), 171–192 | DOI | MR | Zbl

[31] P. Biler, G. Karch, W. A. Woyczyński, “Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18:5 (2001), 613–637 | DOI | MR | Zbl

[32] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Asymptotics for fractional nonlinear heat equations”, J. London Math. Soc. (2), 72:3 (2005), 663–688 | DOI | MR | Zbl

[33] E. I. Kaikina, P. I. Naumkin, N. Hayashi, “On a nonlinear equation with fractional derivative”, Differ. Equ., 46:1 (2010), 83–100 | DOI | MR | Zbl

[34] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[35] A. Constantin, J. Escher, “Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation”, Comm. Pure Appl. Math., 51:5 (1998), 475–504 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[36] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press., Princeton, NJ, 1970 | MR | Zbl

[37] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, v. I, McGraw-Hill, New York–Toronto–London, 1954 | MR | MR | Zbl | Zbl

[38] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Large-time behaviour of solutions to the dissipative nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A, 130:5 (2000), 1029–1043 | DOI | MR | Zbl

[39] N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^{2}(\mathbb{R}^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | MR | Zbl