Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_2_a1, author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev}, title = {The far-field asymptotics of solutions of a~fractional non-linear equation}, journal = {Izvestiya. Mathematics }, pages = {245--274}, publisher = {mathdoc}, volume = {76}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a1/} }
TY - JOUR AU - E. I. Kaikina AU - P. I. Naumkin AU - I. A. Shishmarev TI - The far-field asymptotics of solutions of a~fractional non-linear equation JO - Izvestiya. Mathematics PY - 2012 SP - 245 EP - 274 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a1/ LA - en ID - IM2_2012_76_2_a1 ER -
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. The far-field asymptotics of solutions of a~fractional non-linear equation. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 245-274. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a1/
[1] P. C. Fife, “Asymptotic states for equations of reaction and diffusion”, Bull. Amer. Math. Soc., 84:1 (1978), 693–726 | DOI | MR | Zbl
[2] S. Kamin, L. A. Peletier, “Large time behaviour of solutions of the heat equation with absorption”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12:3 (1985), 393–408 | MR | Zbl
[3] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Landau–Ginzburg type equations in the subcritical case”, Commun. Contemp. Math., 5:1 (2003), 127–145 | DOI | MR | Zbl
[4] A. M. Ilin, “O povedenii resheniya zadachi Koshi dlya parabolicheskogo uravneniya pri neogranichennom vozrastanii vremeni”, UMN, 16:2 (1961), 115–121 | MR | Zbl
[5] M. Escobedo, O. Kavian, H. Matano, “Large time behavior of solutions of a dissipative semilnear heat equation”, Comm. Partial Differential Equations, 20:7–8 (1995), 1427–1452 | DOI | MR | Zbl
[6] A. Gmira, L. Véron, “Large time behaviour of the solutions of a semilinear parabolic equation in $\mathbb{R}^{N}$”, J. Differential Equations, 53 (1984), 258–276 | DOI | MR | Zbl
[7] O. Kavian, “Remarks on the large time behaviour of a nonlinear diffusion equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4:5 (1987), 423–452 | MR | Zbl
[8] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Global existence and time decay of small solutions to the Landau–Ginzburg type equations”, J. Anal. Math., 90:1 (2003), 141–173 | DOI | MR | Zbl
[9] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl
[10] C. Bardos, P. Penel, U. Frisch, P. L. Sulem, “Modified dissipativity for a non-linear evolution equation arising in turbulence”, Arch. Rational Mech. Anal., 71:3 (1979), 237–256 | DOI | MR | Zbl
[11] P. Biler, T. Funaki, W. A. Woyczynski, “Fractal Burgers Equations”, J. Differential Equations, 148:1 (1998), 9–46 | DOI | MR | Zbl
[12] N. Hayashi, N. Ito, E. I. Kaikina, P. I. Naumkin, “On some nonlinear dissipative equations with sub-critical nonlinearities”, Taiwanese J. Math., 8:1 (2004), 135–154 | MR | Zbl
[13] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Large time behavior of solutions to the Landau-Ginzburg type equations”, Funkcial. Ekvac., 44:1 (2001), 171–200 | MR | Zbl
[14] T. Komatsu, “On the martingale problem for generators of stable processes with perturbations”, Osaka J. Math., 21:1 (1984), 113–132 | MR | Zbl
[15] C. J. Amick, J. L. Bona, M. E. Schonbek, “Decay of solutions of some nonlinear wave equations”, J. Differential Equations, 81:4 (1989), 1–49 | DOI | MR | Zbl
[16] J. L. Bona, L. Luo, “Decay of solutions to nonlinear, dispersive wave equations”, Differential Integral Equations, 6:5 (1993), 961–980 | MR | Zbl
[17] J. L. Bona, L. Luo, “More results on the decay of solutions to nonlinear, dispersive wave equations”, Discrete Contin. Dynam. Systems, 1:2 (1995), 151–193 | DOI | MR | Zbl
[18] D. B. Dix, “The dissipation of nonlinear dispersive waves: the case of asymptotically weak nonlinearity”, Comm. Partial Differential Equations, 17:9–10 (1992), 1665–1693 | DOI | MR | Zbl
[19] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[20] R. Prado, E. Zuazua, “Asymptotic expansion for the generalized Benjamin–Bona–Mahony–Burger equation”, Differential Integral Equations, 15:12 (2002), 1409–1434 | MR | Zbl
[21] M. E. Schonbek, “The Fourier splitting method”, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), Internat. Press., Cambridge, MA, 1995, 269–274 | MR | Zbl
[22] L. Zhang, “Decay of solutions of generalized Benjamin–Bona–Mahony equations”, Acta Math. Sinica (N.S.), 10:4 (1994), 428–438 | DOI | MR | Zbl
[23] H. Fujita, “On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124 | MR | Zbl
[24] F. B. Weissler, “Existence and nonexistence of global solutions for a semilinear heat equation”, Israel J. Math., 38:1–2 (1981), 29–40 | DOI | MR
[25] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=-Au+F(u)$”, Arch. Rational Mech. Anal., 51 (1973), 371–386 | DOI | MR | Zbl
[26] K. Hayakawa, “On nonexistence of global solutions of some semilinear parabolic differential equations”, Proc. Japan Acad., 49 (1973), 503–505 | DOI | MR | Zbl
[27] K. Kobayashi, T. Sirao, H. Tanaka, “On the growing up problem for semilinear heat equations”, J. Math. Soc. Japan, 29:3 (1977), 407–424 | DOI | MR | Zbl
[28] S. Sugitani, “On nonexistence of global solutions for some nonlinear integral equations”, Osaka J. Math., 12 (1975), 45–51 | MR | Zbl
[29] M. Escobedo, E. Zuazua, “Large time behavior for convection-diffusion equations in $\mathbb{R}^{n}$”, J. Funct. Anal., 100:1 (1991), 119–161 | DOI | MR | Zbl
[30] P. Biler, G. Karch, W. A. Woyczyński, “Asymptotics for conservation laws involving Lévy diffusion generators”, Studia Math., 148:2 (2001), 171–192 | DOI | MR | Zbl
[31] P. Biler, G. Karch, W. A. Woyczyński, “Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18:5 (2001), 613–637 | DOI | MR | Zbl
[32] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Asymptotics for fractional nonlinear heat equations”, J. London Math. Soc. (2), 72:3 (2005), 663–688 | DOI | MR | Zbl
[33] E. I. Kaikina, P. I. Naumkin, N. Hayashi, “On a nonlinear equation with fractional derivative”, Differ. Equ., 46:1 (2010), 83–100 | DOI | MR | Zbl
[34] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl
[35] A. Constantin, J. Escher, “Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation”, Comm. Pure Appl. Math., 51:5 (1998), 475–504 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[36] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press., Princeton, NJ, 1970 | MR | Zbl
[37] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, v. I, McGraw-Hill, New York–Toronto–London, 1954 | MR | MR | Zbl | Zbl
[38] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Large-time behaviour of solutions to the dissipative nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A, 130:5 (2000), 1029–1043 | DOI | MR | Zbl
[39] N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^{2}(\mathbb{R}^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 48:1 (1988), 17–37 | MR | Zbl