The geometry of inner spanning trees for planar polygons
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 215-244
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the geometry of minimal inner spanning trees for planar
polygons (that is, spanning trees whose edge-intervals lie in these
polygons). We construct analogues of Voronoi diagrams and
Delaunay triangulations, prove that every minimal inner spanning
tree is a subgraph of an appropriate Delaunay triangulation, and describe
the possible structure of the cells of such triangulations.
Keywords:
inner spanning tree, planar polygon, Euclidean spanning tree,
Voronoi diagram, Steiner ratio, characteristic domain.
Mots-clés : Delaunay triangulation
Mots-clés : Delaunay triangulation
@article{IM2_2012_76_2_a0,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {The geometry of inner spanning trees for planar polygons},
journal = {Izvestiya. Mathematics },
pages = {215--244},
publisher = {mathdoc},
volume = {76},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a0/}
}
A. O. Ivanov; A. A. Tuzhilin. The geometry of inner spanning trees for planar polygons. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 215-244. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a0/