The geometry of inner spanning trees for planar polygons
Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 215-244

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of minimal inner spanning trees for planar polygons (that is, spanning trees whose edge-intervals lie in these polygons). We construct analogues of Voronoi diagrams and Delaunay triangulations, prove that every minimal inner spanning tree is a subgraph of an appropriate Delaunay triangulation, and describe the possible structure of the cells of such triangulations.
Keywords: inner spanning tree, planar polygon, Euclidean spanning tree, Voronoi diagram, Steiner ratio, characteristic domain.
Mots-clés : Delaunay triangulation
@article{IM2_2012_76_2_a0,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {The geometry of inner spanning trees for planar polygons},
     journal = {Izvestiya. Mathematics },
     pages = {215--244},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a0/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - The geometry of inner spanning trees for planar polygons
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 215
EP  - 244
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a0/
LA  - en
ID  - IM2_2012_76_2_a0
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T The geometry of inner spanning trees for planar polygons
%J Izvestiya. Mathematics 
%D 2012
%P 215-244
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a0/
%G en
%F IM2_2012_76_2_a0
A. O. Ivanov; A. A. Tuzhilin. The geometry of inner spanning trees for planar polygons. Izvestiya. Mathematics , Tome 76 (2012) no. 2, pp. 215-244. http://geodesic.mathdoc.fr/item/IM2_2012_76_2_a0/