On the blow-up of a~solution of a~non-local system of equations of hydrodynamic type
Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 190-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Oskolkov's non-linear non-local system of equations with a source and the applicability of an operator method. We prove the existence of a weak solution of the initial-boundary value problem for this system and investigate uniqueness conditions for a weak solution. Sufficient conditions for the blow-up of a solution of the problem are found and upper and lower bounds are obtained for the time of blowing up of a solution. We also consider the smoothness problem for a weak solution.
Keywords: blow-up of a solution, system of hydrodynamic type, non-local initial-boundary value problem.
@article{IM2_2012_76_1_a7,
     author = {E. V. Yushkov},
     title = {On the blow-up of a~solution of a~non-local system of equations of hydrodynamic type},
     journal = {Izvestiya. Mathematics },
     pages = {190--213},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a7/}
}
TY  - JOUR
AU  - E. V. Yushkov
TI  - On the blow-up of a~solution of a~non-local system of equations of hydrodynamic type
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 190
EP  - 213
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a7/
LA  - en
ID  - IM2_2012_76_1_a7
ER  - 
%0 Journal Article
%A E. V. Yushkov
%T On the blow-up of a~solution of a~non-local system of equations of hydrodynamic type
%J Izvestiya. Mathematics 
%D 2012
%P 190-213
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a7/
%G en
%F IM2_2012_76_1_a7
E. V. Yushkov. On the blow-up of a~solution of a~non-local system of equations of hydrodynamic type. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 190-213. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a7/

[1] A. P. Oskolkov, “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, J. Soviet Math., 10:2 (1978), 299–335 | DOI | MR | Zbl

[2] V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, J. Math. Sci. (N. Y.), 168:2 (2010), 157–308 | DOI | MR

[3] M. O. Korpusov, A. G. Sveshnikov, “Blow-up of Oskolkov's system of equations”, Sb. Math., 200:4 (2009), 549–572 | DOI | MR | Zbl

[4] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl

[5] M. O. Korpusov, Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, URSS, M., 2011

[6] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl. (4), 146:1 (1987), 65–96 | DOI | MR | Zbl

[7] V. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl

[8] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funkionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauchnyi Mir, M., 2008

[9] R. Temam, Navier–Stokes equations, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[10] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl