Piecewise-smooth circle homeomorphisms with several break points
Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 94-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the invariant probability measure of an ergodic piecewise-smooth circle homeomorphism with several break points and the product of the jumps at break points non-trivial is singular with respect to Lebesgue measure.
Keywords: circle homeomorphism, rotation number, invariant measure.
@article{IM2_2012_76_1_a3,
     author = {A. A. Dzhalilov and D. Mayer and U. A. Safarov},
     title = {Piecewise-smooth circle homeomorphisms with several break points},
     journal = {Izvestiya. Mathematics },
     pages = {94--112},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/}
}
TY  - JOUR
AU  - A. A. Dzhalilov
AU  - D. Mayer
AU  - U. A. Safarov
TI  - Piecewise-smooth circle homeomorphisms with several break points
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 94
EP  - 112
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/
LA  - en
ID  - IM2_2012_76_1_a3
ER  - 
%0 Journal Article
%A A. A. Dzhalilov
%A D. Mayer
%A U. A. Safarov
%T Piecewise-smooth circle homeomorphisms with several break points
%J Izvestiya. Mathematics 
%D 2012
%P 94-112
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/
%G en
%F IM2_2012_76_1_a3
A. A. Dzhalilov; D. Mayer; U. A. Safarov. Piecewise-smooth circle homeomorphisms with several break points. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 94-112. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/

[1] A. Denjoy, “Sur les courbes definies par les équations différentielles à la surface du tore”, J. Math. Pures Appl. (9), 11 (1932), 333–375 | Zbl

[2] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[3] V. I. Arnol'd, “Small denominators. I: Mappings of the circumference onto itself”, Amer. Math. Soc. Transl. II. Ser., 46 (1965), 213–284 | MR | Zbl

[4] M. R. Herman, “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Inst. Hautes Études Sci. Publ. Math., 49:1 (1979), 5–233 | DOI | MR | Zbl

[5] Y. Katznelson, D. Ornstein, “The absolute continuity of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 681–690 | MR

[6] Ya. G. Sinai, K. M. Khanin, “Smoothness of conjugacies of diffeomorphisms of the circle with rotations”, Russian Math. Surveys, 44:1 (1989), 69–99 | DOI | MR | Zbl

[7] J. Moser, “A rapidly convergent iteration method and non-linear differential equations. II”, Ann. Scuola Norm. Sup. Pisa (3), 20 (1966), 499–535 | MR | Zbl

[8] J.-C. Yoccoz, “Il n'y a pas de contre-exemple de Denjoy analytique”, C. R. Acad. Sci. Paris. Ser. I. Math., 298:7 (1984), 141–144 | MR | Zbl

[9] A. Yu. Teplinskii, K. M. Khanin, “Rigidity for circle diffeomorphisms with singularities”, Russian Math. Surveys, 59:2 (2004), 329–353 | DOI | MR | Zbl

[10] K. M. Khanin, E. B. Vul, “Circle homeomorphisms with weak discontinuities”, Dynamical systems and statistical mechanics (Moscow, 1991), Adv. Soviet Math., 3, Amer. Math. Soc., Providence, RI, 1991, 57–98 | MR | Zbl

[11] A. A. Dzhalilov, K. M. Khanin, “On an invariant measure for homeomorphisms of a circle with a point of break”, Funct. Anal. Appl., 32:3 (1998), 153–161 | DOI | MR | Zbl

[12] M. Stein, “Groups of piecewise linear homeomorphisms”, Trans. Amer. Math. Soc., 332:2 (1992), 477–514 | DOI | MR | Zbl

[13] M.-R. Herman, “Sur les difféomorphismes du cercle de nombre de rotation de type constant”, Harmonic analysis (Chicago, 1981), v. II, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, 708–725 | MR | Zbl

[14] A. A. Dzhalilov, I. Liousse, “Circle homeomorphisms with two break points”, Nonlinearity, 19:8 (2006), 1951–1968 | DOI | MR | Zbl

[15] A. A. Dzhalilov, I. Liousse, D. Mayer, “Singular measures of piecewise smooth circle homeomorphisms with two break points”, Discrete Contin. Dyn. Syst., 24:2 (2009), 381–403 | DOI | MR | Zbl

[16] Ya. G. Sinai, Topics in ergodic theory, Princeton Math. Ser., 44, Princeton Univ. Press, Princeton, NJ, 1994 | MR | Zbl | Zbl

[17] G. Światek, “Rational rotation numbers for maps of the circle”, Comm. Math. Phys., 119:1 (1988), 109–128 | DOI | MR | Zbl