Piecewise-smooth circle homeomorphisms with several break points
Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 94-112

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the invariant probability measure of an ergodic piecewise-smooth circle homeomorphism with several break points and the product of the jumps at break points non-trivial is singular with respect to Lebesgue measure.
Keywords: circle homeomorphism, rotation number, invariant measure.
@article{IM2_2012_76_1_a3,
     author = {A. A. Dzhalilov and D. Mayer and U. A. Safarov},
     title = {Piecewise-smooth circle homeomorphisms with several break points},
     journal = {Izvestiya. Mathematics },
     pages = {94--112},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/}
}
TY  - JOUR
AU  - A. A. Dzhalilov
AU  - D. Mayer
AU  - U. A. Safarov
TI  - Piecewise-smooth circle homeomorphisms with several break points
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 94
EP  - 112
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/
LA  - en
ID  - IM2_2012_76_1_a3
ER  - 
%0 Journal Article
%A A. A. Dzhalilov
%A D. Mayer
%A U. A. Safarov
%T Piecewise-smooth circle homeomorphisms with several break points
%J Izvestiya. Mathematics 
%D 2012
%P 94-112
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/
%G en
%F IM2_2012_76_1_a3
A. A. Dzhalilov; D. Mayer; U. A. Safarov. Piecewise-smooth circle homeomorphisms with several break points. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 94-112. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a3/