Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2012_76_1_a1, author = {I. V. Volovich and A. S. Trushechkin}, title = {Asymptotic properties of quantum dynamics in bounded domains at various time scales}, journal = {Izvestiya. Mathematics }, pages = {39--78}, publisher = {mathdoc}, volume = {76}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a1/} }
TY - JOUR AU - I. V. Volovich AU - A. S. Trushechkin TI - Asymptotic properties of quantum dynamics in bounded domains at various time scales JO - Izvestiya. Mathematics PY - 2012 SP - 39 EP - 78 VL - 76 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a1/ LA - en ID - IM2_2012_76_1_a1 ER -
I. V. Volovich; A. S. Trushechkin. Asymptotic properties of quantum dynamics in bounded domains at various time scales. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 39-78. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a1/
[1] P. Bocchieri, A. Loinger, “Quantum recurrence theorem”, Phys. Rev. (2), 107:2 (1957), 337–338 | DOI | MR | Zbl
[2] I. Sh. Averbukh, N. F. Perelman, “Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics”, Phys. Rev. Lett., 139:9 (1989), 449–453 | DOI
[3] I. Sh. Averbukh, N. F. Perel'man, “The dynamics of wave packets of highly-excited states of atoms and molecules”, Soviet Phys. Uspekhi, 34:7 (1991), 572–591 | DOI
[4] D. L. Aronstein, C. R. Stroud, “Fractional wave-function revivals in the infinite square well”, Phys. Rev. A, 55:6 (1997), 4526–4537 | DOI
[5] R. W. Robinett, “Visualizing the collapse and revival of wave packets in the infinite square well using expectation values”, Amer. J. Phys., 68:5 (2000), 410–420 | DOI
[6] R. W. Robinett, “Quantum wave packet revivals”, Phys. Rep., 392:1–2 (2004), 1–119 | DOI | MR
[7] E. M. Wright, D. F. Walls, J. C. Garrison, “Collapses and revivals of Bose–Einstein condensates formed in small atomic samples”, Phys. Rev. Lett., 77:11 (1996), 2158–2161 | DOI
[8] P. Plötz, J. Madroñero, S. Wimberger, “Collapse and revival in inter-band oscillations of a two-band Bose–Hubbard model”, J. Phys. B, 43:8 (2010) | DOI
[9] I. V. Volovich, A. S. Trushechkin, “Squeezed quantum states on an interval and uncertainty relations for nanoscale systems”, Proc. Steklov Inst. Math., 265 (2009), 276–306 | DOI | MR | Zbl
[10] A. Puankare, “Zamechaniya o kineticheskoi teorii gazov”, Izbrannye trudy v trekh tomakh, v. III, Matematika. Teoreticheskaya fizika. Analiz matematicheskikh i estestvennonauchnykh rabot A. Puankare, Nauka, M., 1974, 385–412 | MR | Zbl
[11] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | MR | Zbl
[12] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, RKhD, M.–Izhevsk, 2008
[13] L. Accardi, Yu. G. Lu, I. Volovich, Quantum theory and its stochastic limit, Springer-Verlag, Berlin, 2002 | MR | Zbl
[14] I. V. Volovich, “Problema neobratimosti i funktsionalnaya formulirovka klassicheskoi mekhaniki”, Vestn. SamarGU, 8:67 (2008), 35–55
[15] I. V. Volovich, “Randomness in classical mechanics and Quantum mechanics”, Found. Phys., 41:3 (2011), 516–528 | DOI | Zbl
[16] I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI
[17] A. S. Trushechkin, I. V. Volovich, “Functional classical mechanics and rational numbers”, P-Adic Numbers Ultrametric Anal. Appl., 1:4 (2009), 361–367 | DOI | MR
[18] A. S. Trushechkin, “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1198–1201 | DOI
[19] V. V. Kozlov, D. V. Treshchev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics”, Theoret. and Math. Phys., 151:1 (2007), 539–555 | DOI | MR | Zbl
[20] V. V. Kozlov, O. G. Smolyanov, “Wigner function and diffusion in a collision-free medium of quantum particles”, Theory Probab. Appl., 51:1 (2007), 168–181 | DOI | MR | Zbl
[21] J. R. Klauder, E. C. G. Sudarshan, Fundamentals of quantum optics, Benjamin, New York–Amsterdam, 1968 | MR
[22] J. R. Klauder, B.-S. Skagerstam, Coherent states. Applications in physics and mathematical physics, World Scientific, Singapore, 1985 | MR | Zbl
[23] G. A. González, M. A. del Olmo, “Coherent states on the circle”, J. Phys. A, 31:44 (1998), 8841–8857 | DOI | MR | Zbl
[24] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Exp. Math., 5, de Gruyter, Berlin, 1992 | MR | MR | Zbl | Zbl
[25] D. Mumford, Tata lectures on theta, Birkhaüser, Boston, MA, 1983 | MR | MR | Zbl
[26] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl
[27] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[28] K. Inoue, M. Ohya, I. V. Volovich, “Semiclassical properties and chaos degree for the quantum baker's map”, J. Math. Phys., 43 (2002), 734–755 | DOI | MR | Zbl
[29] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Quantum mechanics: non-relativistic theory, Pergamon Press, Oxford, 1958 | MR | MR | Zbl | Zbl
[30] E. V. Piskovskiy, I. V. Volovich, “On the correspondence between Newtonian and functional mechanics”, Quantum Bio-Informatics IV. From Quantum Infarmation to Bio-Informatics, QP-PQ: Quantum Probab. White Noise Anal., 28, World Scientific, Hackensack, NJ, 2011, 363–372
[31] K. Husimi, “Some formal properties of the density matrix”, Proc. Phys.-Math. Soc. Japan, III. Ser., 22 (1940), 264–314 | Zbl
[32] J. McKenna, H. L. Frisch, “Quantum-mechanical, microscopic Brownian motion”, Phys. Rev. (2), 145:1 (1966), 93–110 | DOI | MR
[33] M. Hillery, R. F. O'Connel, M. O. Scully, E. P. Wigner, “Distribution functions in physics: fundamentals”, Phys. Rep., 106:3 (1984), 121–167 | DOI | MR
[34] L. D. Faddeev, O. A. Yakubovskiǐ, Lectures on quantum mechanics for mathematics students, Stud. Math. Libr., 47, Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl | Zbl
[35] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | MR | Zbl