Chattering regimes and Lagrangian manifolds in problems with phase constraints
Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 1-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a class of optimal control problems with a phase constraint, we construct a Lagrangian manifold containing extremals with countably many tangencies to the boundary of that constraint. The construction proceeds by resolving the singularities of the Hamiltonian system of the problem at the accumulation point of the points of contact of extremals with that boundary.
Keywords: phase constraints, Pontryagin's maximum principle, Lagrangian manifolds, chattering regimes, blow up.
@article{IM2_2012_76_1_a0,
     author = {V. F. Borisov and V. V. Gael and M. I. Zelikin},
     title = {Chattering regimes and {Lagrangian} manifolds in problems with phase constraints},
     journal = {Izvestiya. Mathematics },
     pages = {1--38},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a0/}
}
TY  - JOUR
AU  - V. F. Borisov
AU  - V. V. Gael
AU  - M. I. Zelikin
TI  - Chattering regimes and Lagrangian manifolds in problems with phase constraints
JO  - Izvestiya. Mathematics 
PY  - 2012
SP  - 1
EP  - 38
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a0/
LA  - en
ID  - IM2_2012_76_1_a0
ER  - 
%0 Journal Article
%A V. F. Borisov
%A V. V. Gael
%A M. I. Zelikin
%T Chattering regimes and Lagrangian manifolds in problems with phase constraints
%J Izvestiya. Mathematics 
%D 2012
%P 1-38
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a0/
%G en
%F IM2_2012_76_1_a0
V. F. Borisov; V. V. Gael; M. I. Zelikin. Chattering regimes and Lagrangian manifolds in problems with phase constraints. Izvestiya. Mathematics , Tome 76 (2012) no. 1, pp. 1-38. http://geodesic.mathdoc.fr/item/IM2_2012_76_1_a0/

[1] A. A. Milyutin, “On a certain family of optimal control problems with phase constraint”, J. Math. Sci. (New York), 100:5 (2000), 2564–2571 | DOI | MR | Zbl

[2] V. V. Dikusar, A. A. Milyutin, Kachestvennye i chislennye metody v printsipe maksimuma, Nauka, M., 1989 | MR | Zbl

[3] M. I. Zelikin, V. F. Borisov, Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Systems Control Found. Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[4] M. I. Zelikin, V. F. Borisov, “Regimes with increasingly more frequent switchings in optimal control problems”, Proc. Steklov Inst. Math., 197 (1993), 95–186 | MR | Zbl | Zbl

[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Selected works, v. 4, Classics Soviet Math., The mathematical theory of optimal processes, Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl

[6] A. P. Afanasev, V. V. Dikusar, A. A. Milyutin, S. V. Chukanov, Neobkhodimoe uslovie ekstremuma, Nauka, M., 1988

[7] A. A. Milyutin, Printsip maksimuma v obschei zadache optimalnogo upravleniya, Nauka, M., 2001 | Zbl

[8] A. V. Arutyunov, S. M. Aseev, V. I. Blagodatskikh, “First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 117–139 | DOI | MR | Zbl

[9] A. V. Arutyunov, Optimality conditions. Abnormal and degenerate problems, Kluwer Acad. Publ., Dordrecht, 2000 | MR | MR | Zbl | Zbl