Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_6_a7, author = {A. I. Shtern}, title = {The structure of homomorphisms of connected locally compact groups into compact groups}, journal = {Izvestiya. Mathematics }, pages = {1279--1304}, publisher = {mathdoc}, volume = {75}, number = {6}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a7/} }
A. I. Shtern. The structure of homomorphisms of connected locally compact groups into compact groups. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1279-1304. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a7/
[1] E. Cartan, “Sur les représentations linéaires des groupes clos”, Comment. Math. Helv., 2:1 (1930), 269–283 | DOI | MR | Zbl
[2] B. L. van der Waerden, “Stetigkeitssätze für halbeinfache Liesche Gruppen”, Math. Z., 36:1 (1933), 780–786 | DOI | MR | Zbl
[3] J. D. Lawson, “Intrinsic topologies in topological lattices and semilattices”, Pacific J. Math., 44 (1973), 593–602 | MR | Zbl
[4] W. W. Comfort, “Topological groups”, Handbook of set-theoretic topology, North-Holland, Amsterdam–New York, 1984, 1143–1263 | MR | Zbl
[5] A. Pillay, “An application of model theory to real and $p$-adic algebraic groups”, J. Algebra, 126:1 (1989), 139–146 | DOI | MR | Zbl
[6] K. H. Hofmann, S. A. Morris, The structure of compact groups, de Gruyter Stud. Math., 25, de Gruyter, Berlin, 1998 | MR | Zbl
[7] W. W. Comfort, D. Remus, H. Szambien, “Extending ring topologies”, J. Algebra, 232:1 (2000), 21–47 | DOI | MR | Zbl
[8] J. E. Hart, K. Kunen, “Bohr compactifications of non-abelian groups”, Topology Proc., 26:2 (2001–2002), 593–626 | MR | Zbl
[9] A. I. Shtern, “A version of van der Waerden's theorem and a proof of Mishchenko's conjecture for homomorphisms of locally compact groups”, Izv. Math., 72:1 (2008), 169–205 | DOI | MR | Zbl
[10] W. W. Comfort, L. C. Robertson, “Images and quotients of $\operatorname{SO}(3,\mathbf{R})$: remarks on a theorem of Van der Waerden”, Rocky Mountain J. Math., 17:1 (1987), 1–14 | DOI | MR | Zbl
[11] A. Borel, Essays in the history of Lie groups and algebraic groups, Hist. Math., 21, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[12] O. Schreier, B. L. van der Waerden, “Die Automorphismen der projektiven Gruppen”, Abh. Math. Semin. Univ. Hambg., 6:1 (1928), 303–322 | DOI | Zbl
[13] H. Freudenthal, “Die Topologie der Lieschen Gruppen als algebraisches Phänomen. I”, Ann. of Math. (2), 42 (1941), 1051–1074 | DOI | MR
[14] W. T. van Est, “Dense imbeddings of Lie groups”, Indagationes Math., 13 (1951), 321–328 | MR | Zbl
[15] W. T. van Est, “Dense imbeddings of Lie groups. II (I, II)”, Indagationes Math., 14 (1952), 255–266, 267–274 | MR | Zbl
[16] M. Goto, “Dense imbedding of topological groups”, Proc. Amer. Math. Soc., 4 (1953), 653–655 | DOI | MR | Zbl
[17] M. Goto, “Dense imbeddings of locally compact connected groups”, Ann. of Math. (2), 61 (1955), 154–169 | DOI | MR | Zbl
[18] A. Borel, J. Tits, “Homomorphismes “abstraits” de groupes algebriques simples”, Ann. of Math. (2), 97 (1973), 499–571 | DOI | MR | Zbl
[19] J. Tits, “Homorphismes “abstraits” de groupes de Lie”, Symposia Mathematica (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), v. XIII, Academic Press, London, 1974, 479–499 | MR | Zbl
[20] D. James, W. Waterhouse, B. Weisfeiler, “Abstract homomorphisms of algebraic groups: problems and bibliography”, Comm. Algebra, 9:1 (1981), 95–114 | DOI | MR | Zbl
[21] Y. Chen, “Homomorphisms from linear groups over division rings to algebraic groups”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer-Verlag, Berlin–New York, 1984, 231–265 | DOI | MR | Zbl
[22] G. M. Seitz, “Abstract homomorphisms of algebraic groups”, J. London Math. Soc. (2), 56:1 (1997), 104–124 | DOI | MR | Zbl
[23] H. Freudenthal, “Topologische Gruppen mit genügend vielen fastperiodischen Funktionen”, Ann. of Math. (2), 37:1 (1936), 57–77 | DOI | MR | Zbl
[24] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940 | MR | Zbl
[25] A. I. Shtern, “Applications of automatic continuity results to analogs of the Freudenthal–Weil and Hochschild theorems”, Adv. Stud. Contemp. Math. (Kyungshang), 20:2 (2010), 203–212 | MR | Zbl
[26] A. I. Shtern, “Hochschild kernel for locally bounded finite-dimensional representations of a connected reductive Lie group”, Proc. Jangjeon Math. Soc., 13:2 (2010), 127–132 | MR | Zbl
[27] A. I. Shtern, “Von Neumann kernel of a connected locally compact group, revisited”, Adv. Stud. Contemp. Math. (Kyungshang), 20:3 (2010), 313–318 | MR | Zbl
[28] A. I. Shtern, “Homomorphic images of connected Lie groups in compact groups”, Adv. Stud. Contemp. Math. (Kyungshang), 20:1 (2010), 1–6 | MR | Zbl
[29] A. I. Shtern, “Connected Lie groups having faithful locally bounded (not necessarily continuous) finite-dimensional representations”, Russ. J. Math. Phys., 16:4 (2009), 566–567 | DOI | MR | Zbl
[30] A. I. Shtern, “Freudenthal–Weil theorem for arbitrary embeddings of connected Lie groups in compact groups”, Adv. Stud. Contemp. Math. (Kyungshang), 19:2 (2009), 157–164 | MR | Zbl
[31] W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[32] C. C. Moore, “Groups with finite dimensional irreducible representations”, Trans. Amer. Math. Soc., 166 (1972), 401–410 | DOI | MR | Zbl
[33] L. C. Robertson, “A note on the structure of Moore groups”, Bull. Amer. Math. Soc., 75 (1969), 594–599 | DOI | MR | Zbl
[34] A. I. Štern, “Locally bicompact groups with finite-dimensional irreducible representations”, Math. USSR-Sb., 19:1 (1973), 85–94 | DOI | MR | Zbl | Zbl
[35] A. I. Shtern, “Topological groups with finite von Neumann group algebras of type I”, Sb. Math., 196:3 (2005), 447–463 | DOI | MR | Zbl
[36] A. I. Shtern, “Compact semitopological semigroups and reflexive representability of topological groups”, Russian J. Math. Phys., 2:1 (1994), 131–132 | MR | Zbl
[37] A. I. Shtern, “Nepreryvnye vlozheniya topologicheskikh grupp v lokalno kompaktnye gruppy”, Sovremennye problemy matematiki i mekhaniki, v. 2, vyp. 1, Izd-vo MGU, M., 2009, 89–98
[38] K. Iwasawa, “On some types of topological groups”, Ann. of Math. (2), 50 (1949), 507–558 | DOI | MR | Zbl
[39] A. L. T. Paterson, Amenability, Math. Surveys Monogr., 29, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[40] K. H. Hofmann, S. A. Morris, The Lie theory of connected pro-Lie groups, EMS Tracts Math., 2, Europ. Math. Soc., Zürich, 2007 | MR | Zbl
[41] S. Ahdout, C. Hurwitz, G. Itzkowitz, S. Rothman, H. Strassberg, “Maximal protori in compact topological groups”, Papers on general topology and applications (New York, USA, 1992), Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, 227–236 | MR | Zbl
[42] N. Bourbaki, Éléments de mathématique. Fasc. XXIX. Livre VI: Intégration. Chap. 7: Mesure de Haar. Chap. 8: Convolution et représentations, Hermann, Paris, 1963 | MR | MR | Zbl | Zbl
[43] D. Montgomery, L. Zippin, Topological transformation groups, Interscience Publ., New York, 1955 | MR | Zbl
[44] M. Stroppel, “Lie theory for non-Lie groups”, J. Lie Theory, 4:2 (1994), 257–284 | MR | Zbl
[45] M. M. Day, Normed linear spaces, Ergeb. Math. Grenzgeb., v. 21, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958 | MR | MR | Zbl | Zbl
[46] L. S. Pontryagin, Topological groups, Gordon and Breach, New York–London–Paris, 1966 | MR | MR | Zbl | Zbl
[47] A. I. Shtern, “Almost periodic functions and representations in locally convex spaces”, Russ. Math. Surv., 60:3 (2005), 489–557 | DOI | MR | Zbl
[48] A. I. Shtern, “Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture”, J. Math. Sci., 159:5 (2009), 653–751 | DOI | MR | Zbl
[49] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall, Englewood Cliffs, NJ, 1974 | MR | Zbl
[50] J. von Neumann, “Almost periodic functions in a group. I”, Trans. Amer. Math. Soc., 36:3 (1934), 445–492 | DOI | MR | Zbl
[51] M. Kuranishi, “On non-connected maximally almost periodic groups”, Tôhoku Math. J. (2), 2 (1950), 40–46 | DOI | MR | Zbl
[52] S. Murakami, “Remarks on the structure of maximally almost periodic groups”, Osaka Math. J., 2 (1950), 119–129 | MR | Zbl
[53] S. Grosser, M. Moskowitz, “Compactness conditions in topological groups”, J. Reine Angew. Math., 246 (1971), 1–40 | DOI | MR | Zbl
[54] S. Rothman, “The von Neumann kernel and minimally almost periodic groups”, Trans. Amer. Math. Soc., 259:2 (1980), 401–421 | DOI | MR | Zbl
[55] S. Rothman, H. Strassberg, “The von Neumann kernel of a locally compact group”, J. Austral. Math. Soc. Ser. A, 36:2 (1984), 279–286 | DOI | MR | Zbl
[56] A. I. Shtern, “Von Neumann kernels of connected Lie groups, revisited and refined”, Russ. J. Math. Phys., 17:2 (2010), 262–266 | DOI | MR
[57] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Springer-Verlag, Berlin–New York, 1979 | MR | MR | Zbl
[58] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand, London, 1969 | MR | Zbl | Zbl