$p$-adic evolution pseudo-differential equations and $p$-adic wavelets
Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1249-1278.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of $p$-adic evolution pseudo-differential equations (with time variable $t\in\mathbb{R}$ and space variable $x\in \mathbb{Q}_p^n$), we suggest a method of separation of variables (analogous to the classical Fourier method) which enables us to solve the Cauchy problems for a wide class of such equations. It reduces the solution of evolution pseudo-differential equations to that of ordinary differential equations with respect to the real variable $t$. Using this method, we solve the Cauchy problems for linear evolution pseudo-differential equations and systems of the first order in $t$, linear evolution pseudo-differential equations of the second and higher orders in $t$, and semilinear evolution pseudo-differential equations. We derive a stabilization condition for solutions of linear equations of the first and second orders as $t\to \infty$. Among the equations considered are analogues of the heat equation and linear or non-linear Schrödinger equations. The results obtained develop the theory of $p$-adic pseudo-differential equations and can be used in applications.
Keywords: $p$-adic pseudo-differential operator, $p$-adic fractional operator, $p$-adic wavelet bases, $p$-adic pseudo-differential equations.
@article{IM2_2011_75_6_a6,
     author = {V. M. Shelkovich},
     title = {$p$-adic evolution pseudo-differential equations and $p$-adic wavelets},
     journal = {Izvestiya. Mathematics },
     pages = {1249--1278},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/}
}
TY  - JOUR
AU  - V. M. Shelkovich
TI  - $p$-adic evolution pseudo-differential equations and $p$-adic wavelets
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1249
EP  - 1278
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/
LA  - en
ID  - IM2_2011_75_6_a6
ER  - 
%0 Journal Article
%A V. M. Shelkovich
%T $p$-adic evolution pseudo-differential equations and $p$-adic wavelets
%J Izvestiya. Mathematics 
%D 2011
%P 1249-1278
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/
%G en
%F IM2_2011_75_6_a6
V. M. Shelkovich. $p$-adic evolution pseudo-differential equations and $p$-adic wavelets. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1249-1278. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/

[1] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Scientific, River Edge, NJ, 1994 | MR | MR | Zbl | Zbl

[2] I. V. Volovich, “$p$-adic space-time and string theory”, Theoret. and Math. Phys., 71:3 (1987), 574–576 | DOI | MR | Zbl

[3] I. V. Volovich, “$p$-Adic string”, Classical Quantum Gravity, 4:4 (1987), 83–87 | DOI | MR

[4] I. Ya. Aref'eva, B. G. Dragović, I. V. Volovich, “On the adelic string amplitudes”, Phys. Lett. B, 209:4 (1988), 445–450 | DOI | MR

[5] I. Ya. Aref'eva, I. V. Volovich, “Strings, gravity and $p$-adic space-time”, Quantum Gravity, Proceedings of the Fourth Seminar on Quantum Gravity (Moscow, 1987), World Scientific, Singapore, 1988 | MR

[6] I. Ya. Aref'eva, B. Dragovich, P. H. Frampton, I. V. Volovich, “The wave function of the universe and $p$-adic gravity”, Internat. J. Modern Phys. A, 6:24 (1991), 4341–4358 | DOI | MR | Zbl

[7] I. Ya. Aref'eva, P. H. Frampton, “Beyond Planck energy to non-archimedean geometry”, Modern Phys. Lett. A, 6:4 (1991), 313–316 | DOI | MR | Zbl

[8] A. Yu. Khrennikov, $p$-adic valued distributions in mathematical physics, Math. Appl., 309, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl

[9] A. Khrennikov, Non-archimedean analysis: quantum paradoxes, dynamical systems and biological models, Math. Appl., 427, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[10] V. S. Vladimirov, I. V. Volovich, “$p$-adic quantum mechanics”, Comm. Math. Phys., 123:4 (1989), 659–676 | DOI | MR | Zbl

[11] V. Anashin, A. Yu. Khrennikov, Applied algebraic dynamics, de Gruyter Exp. Math., 49, De Gruyter, Berlin–New York, 2009 | MR | Zbl

[12] A. N. Kochubei, Pseudo-differential equations and stochastics over non-archimedean fields, Monogr. Textbooks Pure Appl. Math., 244, Marcel Dekker, New York–Basel, 2001 | MR | Zbl

[13] S. V. Kozyrev, Metody i prilozheniya ultrametricheskogo i $p$-adicheskogo analiza: ot teorii vspleskov do biofiziki, Sovr. probl. matem., 12, MIAN, M., 2008

[14] S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, “Harmonic analysis in the $p$-adic Lizorkin spaces: fractional operators, pseudo-differential equations, $p$-adic wavelets, Tauberian theorems”, J. Fourier Anal. Appl., 12:4 (2006), 393–425 | DOI | MR | Zbl

[15] A. Yu. Khrennikov, S. V. Kozyrev, “Wavelets on ultrametric spaces”, Appl. Comput. Harmon. Anal., 19:1 (2005), 61–76 | DOI | MR | Zbl

[16] S. V. Kozyrev, A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets”, Izv. Math., 69:5 (2005), 989–1003 | DOI | MR | Zbl

[17] A. Yu. Khrennikov, V. M. Shelkovich, $p$-Adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators, arXiv: math-ph/0612049

[18] A. Yu. Khrennikov, V. M. Shelkovich, “Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations”, Appl. Comput. Harmon. Anal., 28:1 (2010), 1–23 | DOI | MR | Zbl

[19] A. Yu. Khrennikov, V. M. Shelkovich, “Non-haar $p$-adic wavelets and pseudodifferential operators”, Dokl. Math., 77:1 (2008), 42–45 | DOI | MR | Zbl

[20] A. Yu. Khrennikov, V. M. Shelkovich, “An infinite family of $p$-adic non-haar wavelet bases and pseudo-differential operators”, P-Adic Numbers Ultrametric Anal. Appl., 1:3 (2009), 204–216 | DOI | MR | Zbl

[21] A. Yu. Khrennikov, V. M. Shelkovich, M. Skopina, “$p$-Adic orthogonal wavelet bases”, P-Adic Numbers Ultrametric Anal. Appl., 1:2 (2009), 145–156 | DOI | MR | Zbl

[22] A. Yu. Khrennikov, V. M. Shelkovich, M. Skopina, “$p$-adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl

[23] S. V. Kozyrev, “Wavelet theory as $p$-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376 | DOI | MR | Zbl

[24] S. V. Kozyrev, “$p$-adic pseudodifferential operators: methods and applications”, Proc. Steklov Inst. Math., 245 (2004), 143–153 | MR | Zbl

[25] S. V. Kozyrev, “$p$-Adic pseudodifferential operators and $p$-adic wavelets”, Theoret. and Math. Phys., 138:3 (2004), 322–332 | DOI | MR | Zbl

[26] V. Shelkovich, M. Skopina, “$p$-Adic Haar multiresolution analysis and pseudo-differential operators”, J. Fourier Anal. Appl., 15:3 (2009), 366–393 | DOI | MR | Zbl

[27] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A, 32:50 (1999), 8785–8791 | DOI | MR | Zbl

[28] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, “$p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A, 35:2 (2002), 177–189 | DOI | MR | Zbl

[29] G. Parisi, N. Sourlas, “$p$-adic numbers and replica symmetry breaking”, Eur. Phys. J. B Condens. Matter Phys., 14:3 (2000), 535–542 | DOI | MR

[30] V. S. Vladimirov, “On the spectrum of some pseudodifferential operators over the field of $p$-adic numbers”, Leningrad Math. J., 2:6 (1991), 1261–1278 | MR | Zbl | Zbl

[31] A. N. Kochubeǐ, “Parabolic equations over the field of $p$-adic numbers”, Math. USSR-Izv., 39:3 (1992), 1263–1280 | DOI | MR | Zbl | Zbl

[32] A. N. Kochubei, “Schrödinger-type operator over p-adic number field”, Theoret. and Math. Phys., 86:3 (1991), 221–228 | DOI | MR | Zbl

[33] S. Albeverio, S. Kuzhel, S. Torba, “$p$-Adic Schrödinger-type operator with point interactions”, J. Math. Anal. Appl., 338:2 (2008), 1267–1281 | DOI | MR | Zbl

[34] S. Kuzhel, S. Torba, “$p$-adic fractional differentiation operators with point interactions”, Methods Funct. Anal. Topology, 13:2 (2007), 169–180 | MR | Zbl

[35] V. S. Vladimirov, I. V. Volovich, “$p$-adic Schrödinger-type equation”, Lett. Math. Phys., 18:1 (1989), 43–53 | DOI | MR | Zbl

[36] A. Kh. Bikulov, I. V. Volovich, “$p$-adic Brownian motion”, Izv. Math., 61:3 (1997), 537–552 | DOI | MR | Zbl

[37] S. V. Kozyrev, “Toward an ultrametric theory of turbulence”, Theoret. and Math. Phys., 157:3 (2008), 1713–1722 | DOI | MR | Zbl

[38] S. Fischenko, E. Zelenov, “$p$-adic models of turbulence”, $p$-adic mathematical physics (Belgrade, Serbia and Montenegro, 2005), AIP Conf. Proc., 826, Amer. Institute of Physics, Melville, NY, 2006, 174–191 | MR | Zbl

[39] J. J. Rodriguez-Vega, W. A. Zǔñiga-Galindo, “Taibleson operators, $p$-adic parabolic equations and ultrametric diffusion”, Pacific J. Math., 237:2 (2008), 327–347 | DOI | MR | Zbl

[40] V. S. Vladimirov, “$p$-Adic analysis and $p$-adic quantum mechanics”, Ann. of the NY Ac. Sci.: Symposium in Frontiers of Math., 1988

[41] A. N. Kochubei, “Additive and multiplicative fractional differentiations over the field of $p$-adic numbers”, $p$-adic functional analysis (Nijmegen, Netherlands, 1996), Lecture Notes in Pure and Appl. Math., 192, Marcel Dekker, New York, 1997, 275–280 | MR | Zbl

[42] S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, “$p$-Adic semilinear evolutionary pseudodifferential equations in Lizorkin spaces”, Dokl. Math., 76:1 (2007), 539–543 | DOI | MR | Zbl

[43] S. Albeverio, S. V. Kozyrev, “Multidimensional ultrametric pseudodifferential equations”, Proc. Steklov Inst. Math., 265 (2009), 13–29 | DOI | MR | Zbl

[44] S. V. Kozyrev, A. Yu. Khrennikov, “Localization in space for a free particle in ultrametric quantum mechanics”, Dokl. Math., 74:3 (2006), 906–909 | DOI | MR | Zbl

[45] A. Yu. Khrennikov, S. V. Kozyrev, “Wavelets and the Cauchy problem for the Schrödinger equation on analytic ultrametric space”, Mathematical modelling of wave phenomena (Växjö, Sweden, 2005), AIP Conf. Proc., 834, Amer. Institute of Physics, Melville, NY, 2006, 344–350 | Zbl

[46] M. Taibleson, “Harmonic analysis on $n$-dimensional vector spaces over local fields I. Basic results on fractional integration”, Math. Ann., 176:3 (1968), 191–207 | DOI | MR | Zbl

[47] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, NJ, 1975 | MR | Zbl

[48] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl

[49] Y. Meyer, “Ondelettes et fonctions splines”, Séminaire sur les équations aux dérivées partielles 1986–1987, Vol. 6, Ecole Polytech., Palaiseau, 1987 | MR | Zbl

[50] S. Mallat, Multiresolution representation and wavelets, Ph. D. Thesis, University of Pennsylvania, Philadelphia, PA, 1988

[51] S. Mallat, Proc. of Machine Vision Conference, Lake Taho, 1987

[52] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR | Zbl | Zbl

[53] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Amer. Math. Soc., Providence, RI, 2011 | MR | MR | Zbl | Zbl

[54] Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs”, Séminaire N. Bourbaki 1985/86, Astérisque, 145–146, 1987, 209–223 | MR | Zbl

[55] S. Albeverio, S. V. Kozyrev, “Multidimensional basis of $p$-adic wavelets and representation theory”, $p$-adic Numbers, Ultrametric Analysis and Applications, 1:3 (2009), 181–189 | DOI | MR | Zbl

[56] P. I. Lizorkin, “Obobschennoe liuvillevskoe differentsirovanie i funktsionalnye prostranstva $L_p^r(E_n)$. Teoremy vlozheniya”, Matem. sb., 60(102):3 (1963), 325–353 | MR | Zbl

[57] P. I. Lizorkin, “Operators connected with fractional differentiation, and classes of differentiable functions”, Proc. Steklov Inst. Math., 117 (1974), 251–286 | MR | Zbl | Zbl

[58] S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, “Pseudo-differential operators in the $p$-adic Lizorkin space”, $p$-adic mathematical physics (Belgrade, Serbia and Montenegro, 2005), AIP Conf. Proc., 826, Amer. Institute of Physics, Melville, NY, 2006, 195–205 | MR | Zbl

[59] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966 | MR | MR | Zbl | Zbl

[60] A. N. Kochubei, “Fundamental solutions of pseudodifferential equations connected with $p$-adic quadratic forms”, Izv. Math., 62:6 (1998), 1169–1188 | DOI | MR | Zbl

[61] W. A. Zuniga-Galindo, “Pseudo-differential equations connected with $p$-adic forms and local zeta functions”, Bull. Austral. Math. Soc., 70:1 (2004), 73–86 | DOI | MR | Zbl

[62] W. A. Zuniga-Galindo, “Fundamental solutions of pseudo-differential operators over $p$-adic fields”, Rend. Sem. Mat. Univ. Padova, 109 (2003), 241–245 | MR | Zbl

[63] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, M., 1959 | Zbl

[64] N. M. Chuong, N. V. Co, “The Cauchy problem for a class of pseudodifferential equations over $p$-adic field”, J. Math. Anal. and Appl., 340:1 (2008), 629–645 | DOI | MR | Zbl

[65] I. G. Petrovskii, Ordinary differential equations, Dover, New York, 1973 | MR | MR | Zbl | Zbl