$p$-adic evolution pseudo-differential equations and $p$-adic wavelets
Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1249-1278

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of $p$-adic evolution pseudo-differential equations (with time variable $t\in\mathbb{R}$ and space variable $x\in \mathbb{Q}_p^n$), we suggest a method of separation of variables (analogous to the classical Fourier method) which enables us to solve the Cauchy problems for a wide class of such equations. It reduces the solution of evolution pseudo-differential equations to that of ordinary differential equations with respect to the real variable $t$. Using this method, we solve the Cauchy problems for linear evolution pseudo-differential equations and systems of the first order in $t$, linear evolution pseudo-differential equations of the second and higher orders in $t$, and semilinear evolution pseudo-differential equations. We derive a stabilization condition for solutions of linear equations of the first and second orders as $t\to \infty$. Among the equations considered are analogues of the heat equation and linear or non-linear Schrödinger equations. The results obtained develop the theory of $p$-adic pseudo-differential equations and can be used in applications.
Keywords: $p$-adic pseudo-differential operator, $p$-adic fractional operator, $p$-adic wavelet bases, $p$-adic pseudo-differential equations.
@article{IM2_2011_75_6_a6,
     author = {V. M. Shelkovich},
     title = {$p$-adic evolution pseudo-differential equations and $p$-adic wavelets},
     journal = {Izvestiya. Mathematics },
     pages = {1249--1278},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/}
}
TY  - JOUR
AU  - V. M. Shelkovich
TI  - $p$-adic evolution pseudo-differential equations and $p$-adic wavelets
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1249
EP  - 1278
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/
LA  - en
ID  - IM2_2011_75_6_a6
ER  - 
%0 Journal Article
%A V. M. Shelkovich
%T $p$-adic evolution pseudo-differential equations and $p$-adic wavelets
%J Izvestiya. Mathematics 
%D 2011
%P 1249-1278
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/
%G en
%F IM2_2011_75_6_a6
V. M. Shelkovich. $p$-adic evolution pseudo-differential equations and $p$-adic wavelets. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1249-1278. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a6/