Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_6_a5, author = {A. Yu. Trynin}, title = {On operators of interpolation with respect to solutions of {a~Cauchy} problem and {Lagrange--Jacobi} polynomials}, journal = {Izvestiya. Mathematics }, pages = {1215--1248}, publisher = {mathdoc}, volume = {75}, number = {6}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a5/} }
TY - JOUR AU - A. Yu. Trynin TI - On operators of interpolation with respect to solutions of a~Cauchy problem and Lagrange--Jacobi polynomials JO - Izvestiya. Mathematics PY - 2011 SP - 1215 EP - 1248 VL - 75 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a5/ LA - en ID - IM2_2011_75_6_a5 ER -
A. Yu. Trynin. On operators of interpolation with respect to solutions of a~Cauchy problem and Lagrange--Jacobi polynomials. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1215-1248. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a5/
[1] A. Yu. Trynin, “A generalization of the Whittaker–Kotel'nikov–Shannon sampling theorem for continuous functions on a closed interval”, Sb. Math., 200:11 (2009), 1633–1679 | DOI | MR | Zbl
[2] A. Yu. Trynin, “Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval”, Sb. Math., 198:10 (2007), 1517–1534 | DOI | MR | Zbl
[3] A. Yu. Trynin, “Estimates for the Lebesgue functions and the Nevai formula for the $sinc$-approximations of continuous functions on an interval”, Siberian Math. J., 48:5 (2007), 929–938 | DOI | MR | Zbl
[4] A. Yu. Trynin, “A criterion for the uniform convergence of sinc-approximations on a segment”, Russian Math. (Iz. VUZ), 52:6 (2008), 58–69 | DOI | MR | Zbl
[5] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 1976 | MR | Zbl
[6] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl
[7] Ya. L. Geronimus, “O skhodimosti interpolyatsionnogo protsessa Lagranzha s uzlami v kornyakh ortogonalnykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 27:3 (1963), 529–560 | MR | Zbl
[8] S. A. Agakhanov, “Otsenka funktsii Lebega dlya interpolyatsionnogo protsessa po kornyam polinomov Yakobi”, Izv. vuzov. Matem., 1967, no. 11, 3–6 | MR | Zbl
[9] G. I. Natanson, “Dvustoronnyaya otsenka funktsii Lebega interpolyatsionnogo protsessa Lagranzha s uzlami Yakobi”, Izv. vuzov. Matem., 1967, no. 11, 67–74 | MR | Zbl
[10] D. L. Berman, “Printsip monotonii v teorii interpolyatsii funktsii deistvitelnogo peremennogo”, Izv. vuzov. Matem., 1972, no. 4, 10–17 | MR | Zbl
[11] G. P. Nevai, “Zamechaniya ob interpolirovanii”, Acta Math. Acad. Sci. Hungar., 25:1–2 (1974), 123–144 | DOI | MR | Zbl
[12] A. A. Kel'zon, “Interpolation of functions with bounded $p$-variation”, Russian Math. (Iz. VUZ), 22:5 (1978), 99–102 | MR | Zbl
[13] S. S. Pilipčuk, “Tests for the convergence of interpolation processes”, Russian Math. (Iz. VUZ), 23:12 (1979), 41–46 | MR | Zbl
[14] S. S. Pilipčuk, “Divergence of Lagrange interpolation processes on sets of second category”, Russian Math. (Iz. VUZ), 23:3 (1979), 30–36 | MR | Zbl
[15] S. S. Pilipchuk, “O raskhodimosti interpolyatsionnykh protsessov Lagranzha na schetnykh mnozhestvakh”, Izv. vuzov. Matem., 1980, no. 12, 38–44 | MR | Zbl
[16] A. A. Privalov, “The divergence of the Lagrange interpolation processes with respect to Jacobi nodes on a set of positive measure”, Siberian Math. J., 17:4 (1976), 630–648 | DOI | MR | Zbl | Zbl
[17] V. P. Sklyarov, Pryamye i obratnye teoremy teorii priblizhenii dlya nailuchshikh priblizhenii s vesom $(1-x)^\alpha(1+x)^\beta$, dep. v VINITI 5160-81
[18] A. A. Privalov, “Uniform convergence criteria for Lagrange interpolation processes”, Russian Math. (Iz. VUZ), 30:5 (1986), 65–77 | MR | Zbl | Zbl
[19] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[20] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[21] A. Yu. Trynin, “Absence of stability of interpolation with respect to eigenfunctions of the Sturm–Liouville problem”, Russian Math. (Iz. VUZ), 44:9 (2000), 58–71 | MR | Zbl
[22] I. P. Natanson, Constructive function theory, vol. I–III, Ungar Publ., New York, 1964–1965 | MR | MR | Zbl | Zbl