On operators of interpolation with respect to solutions of a~Cauchy problem and Lagrange--Jacobi polynomials
Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1215-1248
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe classes of continuous functions for which one has pointwise and
uniform convergence of certain Lagrange-type operators (constructed from
solutions of a Cauchy problem) and the Lagrange–Jacobi interpolation
polynomials ${\mathcal L}_n^{(\alpha_{n},\beta_{n})}(F,\cos\theta)$.
We also obtain sufficient conditions for the equiconvergence of these
interpolation processes.
Keywords:
Lagrange operators, sampling theorem,
theory of approximation of functions.
Mots-clés : interpolation processes
Mots-clés : interpolation processes
@article{IM2_2011_75_6_a5,
author = {A. Yu. Trynin},
title = {On operators of interpolation with respect to solutions of {a~Cauchy} problem and {Lagrange--Jacobi} polynomials},
journal = {Izvestiya. Mathematics },
pages = {1215--1248},
publisher = {mathdoc},
volume = {75},
number = {6},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a5/}
}
TY - JOUR AU - A. Yu. Trynin TI - On operators of interpolation with respect to solutions of a~Cauchy problem and Lagrange--Jacobi polynomials JO - Izvestiya. Mathematics PY - 2011 SP - 1215 EP - 1248 VL - 75 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a5/ LA - en ID - IM2_2011_75_6_a5 ER -
A. Yu. Trynin. On operators of interpolation with respect to solutions of a~Cauchy problem and Lagrange--Jacobi polynomials. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1215-1248. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a5/