Weak${}^*$ convergence of operator means
Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1165-1183.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear operator $U$ with $\|U^n\| \leqslant \operatorname{const}$ on a Banach space $X$ we discuss conditions for the convergence of ergodic operator nets $T_\alpha$ corresponding to the adjoint operator $U^*$ of $U$ in the $\mathrm{W^*O}$-topology of the space $\operatorname{End} X^*$. The accumulation points of all possible nets of this kind form a compact convex set $L$ in $\operatorname{End} X^*$, which is the kernel of the operator semigroup $G=\overline{\operatorname{co}}\,\Gamma_0$, where $\Gamma_0=\{U_n^*, n \geqslant 0\}$. It is proved that all ergodic nets $T_\alpha$ weakly${}^*$ converge if and only if the kernel $L$ consists of a single element. In the case of $X=C(\Omega)$ and the shift operator $U$ generated by a continuous transformation $\varphi$ of a metrizable compactum $\Omega$ we trace the relationships among the ergodic properties of $U$, the structure of the operator semigroups $L$, $G$ and $\Gamma=\overline{\Gamma}_0$, and the dynamical characteristics of the semi-cascade $(\varphi,\Omega)$. In particular, if $\operatorname{card}L=1$, then a) for any $\omega \in\Omega$ the closure of the trajectory $\{\varphi^n\omega, n \geqslant 0\}$ contains precisely one minimal set $m$, and b) the restriction $(\varphi,m)$ is strictly ergodic. Condition a) implies the $\mathrm{W^*O}$-convergence of any ergodic sequence of operators $T_n \in \operatorname{End} X^*$ under the additional assumption that the kernel of the enveloping semigroup $E(\varphi,\Omega)$ contains elements obtained from the ‘basis’ family of transformations $\{\varphi^n, n \geqslant 0\}$ of the compact set $\Omega$ by using some transfinite sequence of sequential passages to the limit.
Keywords: weak${}^*$ ergodic theory, dynamical system, enveloping semigroup
Mots-clés : Choquet representation.
@article{IM2_2011_75_6_a3,
     author = {A. V. Romanov},
     title = {Weak${}^*$ convergence of operator means},
     journal = {Izvestiya. Mathematics },
     pages = {1165--1183},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a3/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Weak${}^*$ convergence of operator means
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1165
EP  - 1183
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a3/
LA  - en
ID  - IM2_2011_75_6_a3
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Weak${}^*$ convergence of operator means
%J Izvestiya. Mathematics 
%D 2011
%P 1165-1183
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a3/
%G en
%F IM2_2011_75_6_a3
A. V. Romanov. Weak${}^*$ convergence of operator means. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1165-1183. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a3/

[1] U. Krengel, Ergodic theorems, de Gruyter Stud. Math., 6, de Gruyter, Berlin–New York, 1985 | MR | Zbl

[2] R. Sine, “A mean ergodic theorem”, Proc. Amer. Math. Soc., 24:3 (1970), 438–439 | DOI | MR | Zbl

[3] E. Yu. Emel'ynov, N. Erkursun, “Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets”, Vladikavk. matem. zhurn., 9:3 (2007), 22–26 | MR

[4] S. P. Lloyd, “On the mean ergodic theorem of Sine”, Proc. Amer. Math. Soc., 56 (1976), 121–126 | DOI | MR | Zbl

[5] A. Iwanik, “On pointwise convergence of Cesàro means and separation properties for Markov operators on $C(X)$”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 29:9–10 (1981), 515–520 | MR | Zbl

[6] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960 | MR | MR | Zbl | Zbl

[7] J. C. Oxtoby, “Ergodic sets”, Bull. Amer. Math. Soc., 58:3 (1952), 116–136 | DOI | MR | MR | Zbl

[8] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969 | MR | Zbl

[9] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. 1, Amer. Math. Soc., Providence, RI, 1961 | MR | MR | Zbl | Zbl

[10] E. S. Lyapin, Semigroups, Amer. Math. Soc., Providence, RI, 1963 | MR | MR | Zbl | Zbl

[11] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton–Toronto–New York–London, 1966 | MR | Zbl | Zbl

[12] F. Hausdorff, Mengenlehre, de Gruyter, Berlin–Leipzig, 1927 | MR | Zbl

[13] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[14] E. Glasner, “Enveloping semigroups in topological dynamics”, Topology Appl., 154:11 (2007), 2344–2363 | DOI | MR | Zbl

[15] A. Köhler, “Enveloping semigroups for flows”, Proc. Roy. Irish Acad. Sect. A, 95:2 (1995), 179–191 | MR | Zbl