Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_6_a3, author = {A. V. Romanov}, title = {Weak${}^*$ convergence of operator means}, journal = {Izvestiya. Mathematics }, pages = {1165--1183}, publisher = {mathdoc}, volume = {75}, number = {6}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a3/} }
A. V. Romanov. Weak${}^*$ convergence of operator means. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1165-1183. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a3/
[1] U. Krengel, Ergodic theorems, de Gruyter Stud. Math., 6, de Gruyter, Berlin–New York, 1985 | MR | Zbl
[2] R. Sine, “A mean ergodic theorem”, Proc. Amer. Math. Soc., 24:3 (1970), 438–439 | DOI | MR | Zbl
[3] E. Yu. Emel'ynov, N. Erkursun, “Generalization of Eberlein's and Sine's ergodic theorems to $LR$-nets”, Vladikavk. matem. zhurn., 9:3 (2007), 22–26 | MR
[4] S. P. Lloyd, “On the mean ergodic theorem of Sine”, Proc. Amer. Math. Soc., 56 (1976), 121–126 | DOI | MR | Zbl
[5] A. Iwanik, “On pointwise convergence of Cesàro means and separation properties for Markov operators on $C(X)$”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 29:9–10 (1981), 515–520 | MR | Zbl
[6] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960 | MR | MR | Zbl | Zbl
[7] J. C. Oxtoby, “Ergodic sets”, Bull. Amer. Math. Soc., 58:3 (1952), 116–136 | DOI | MR | MR | Zbl
[8] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969 | MR | Zbl
[9] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. 1, Amer. Math. Soc., Providence, RI, 1961 | MR | MR | Zbl | Zbl
[10] E. S. Lyapin, Semigroups, Amer. Math. Soc., Providence, RI, 1963 | MR | MR | Zbl | Zbl
[11] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton–Toronto–New York–London, 1966 | MR | Zbl | Zbl
[12] F. Hausdorff, Mengenlehre, de Gruyter, Berlin–Leipzig, 1927 | MR | Zbl
[13] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[14] E. Glasner, “Enveloping semigroups in topological dynamics”, Topology Appl., 154:11 (2007), 2344–2363 | DOI | MR | Zbl
[15] A. Köhler, “Enveloping semigroups for flows”, Proc. Roy. Irish Acad. Sect. A, 95:2 (1995), 179–191 | MR | Zbl