Sharp upper and lower bounds for nestohedra
Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1107-1133.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sharp upper and lower bounds for the coefficients of the enumerative polynomials of all flag nestohedra as well as for certain important subclasses including graph-associahedra. Proofs are based on an original construction of sequences of polytopes.
Keywords: convex polytope, face vector, flag nestohedron
Mots-clés : graph-associahedron, Gal's conjecture.
@article{IM2_2011_75_6_a1,
     author = {V. M. Buchstaber and V. D. Volodin},
     title = {Sharp upper and lower bounds for nestohedra},
     journal = {Izvestiya. Mathematics },
     pages = {1107--1133},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - V. D. Volodin
TI  - Sharp upper and lower bounds for nestohedra
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1107
EP  - 1133
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/
LA  - en
ID  - IM2_2011_75_6_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A V. D. Volodin
%T Sharp upper and lower bounds for nestohedra
%J Izvestiya. Mathematics 
%D 2011
%P 1107-1133
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/
%G en
%F IM2_2011_75_6_a1
V. M. Buchstaber; V. D. Volodin. Sharp upper and lower bounds for nestohedra. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1107-1133. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/

[1] V. M. Buchstaber, N. Ray, “An invitation to toric topology: vertex four of a remarkable tetrahedron”, Toric topology (Osaka, Japan, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 1–27 | MR | Zbl

[2] V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[3] D. W. Barnette, “The minimum number of vertices of a simple polytope”, Israel J. Math., 10:1 (1971), 121–125 | DOI | MR | Zbl

[4] D. Barnette, “A proof of the lower bound conjecture for convex polytopes”, Pacific J. Math., 46:2 (1973), 349–354 | MR | Zbl

[5] P. McMullen, “The maximum numbers of faces of a convex polytope”, Mathematika, 17:2 (1970), 179–184 | DOI | MR | Zbl

[6] L. J. Billera, C. W. Lee, “A proof of the sufficiency of McMullen's conditions for $f$-vectors of simplicial convex polytopes”, J. Combin. Theory Ser. A, 31:3 (1981), 237–255 | DOI | MR | Zbl

[7] R. P. Stanley, “The number of faces of a simplicial convex polytope”, Adv. in Math., 35:3 (1980), 236–238 | DOI | MR | Zbl

[8] P. McMullen, “The numbers of faces of simplicial polytopes”, Israel J. Math., 9:4 (1971), 559–570 | DOI | MR | Zbl

[9] P. McMullen, “On simple polytopes”, Invent. Math., 113:1 (1993), 419–444 | DOI | MR | Zbl

[10] P. McMullen, “Weights on polytopes”, Discrete Comput. Geom., 15:4 (1996), 363–388 | DOI | MR | Zbl

[11] V. A. Timorin, “An analogue of the Hodge–Riemann relations for simple convex polytopes”, Russian Math. Surveys, 54:2 (1999), 381–426 | DOI | MR | Zbl

[12] G. M. Ziegler, “Face numbers of 4-polytopes and 3-spheres”, Proceedings of the international congress of mathematicians. III (Beijing, China, 2002), Invited lectures, Higher Education Press, Beijing, 2002, 625–634 | MR | Zbl

[13] E. M. Feichtner, B. Sturmfels, “Matroid polytopes, nested sets and Bergman fans”, Port. Math. (N.S.), 62:4 (2005), 437–468 | MR | Zbl

[14] A. Postnikov, “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not. IMRN, 2009, no. 6, 1026–1106 | DOI | MR | Zbl

[15] A. Postnikov, V. Reiner, L. Williams, “Faces of generalized permutohedra”, Doc. Math., 13 (2008), 207–273 | MR | Zbl

[16] C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494 | DOI | MR | Zbl

[17] W. Fulton, R. MacPherson, “A compactification of configuration spaces”, Ann. of Math. (2), 139:1 (1994), 183–225 | DOI | MR | Zbl

[18] E. M. Feichtner, D. Kozlov, “Incidence combinatorics of resolutions”, Selecta Math. (N.S.), 10:1 (2004), 37–60 | DOI | MR | Zbl

[19] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[20] T. Delzant, “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116:3 (1988), 315–339 | MR | Zbl

[21] A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Math., 1764, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[22] M. Carr, S. L. Devadoss, “Coxeter complexes and graph-associahedra”, Topology Appl., 153:12 (2006), 2155–2168 | DOI | MR | Zbl

[23] M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, Math. Surveys Monogr., 96, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[24] R. Charney, M. Davis, “The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold”, Pacific J. Math., 171:1 (1995), 117–137 | MR | Zbl

[25] S. R. Gal, “Real root conjecture fails for five- and higher-dimensional spheres”, Discrete Comput. Geom., 34:2 (2005), 269–284 | DOI | MR | Zbl

[26] N. Yu. Erokhovets, “Gal's conjecture for nestohedra corresponding to complete bipartite graphs”, Proc. Steklov Inst. Math., 266 (2009), 120–132 | DOI | MR | Zbl

[27] A. G. Fenn, Generating functions of nestohedra and applications, arXiv: 0908.0605

[28] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263 (2008), 13–37 | DOI | MR | Zbl

[29] V. M. Buchstaber, “Lectures on toric topology”, Trends in Mathematics, 11:1 (2008), 1–55

[30] F. Chapoton, S. Fomin, A. Zelevinsky, “Polytopal realizations of generalized associahedra”, Canad. Math. Bull., 45:4 (2002), 537–566 | DOI | MR | Zbl

[31] C. Ceballos, G. M. Ziegler, Three non-equivalent realizations of the associahedron, arXiv: 1006.3487v1

[32] S. L. Devadoss, “A realization of graph associahedra”, Discrete Math., 309:1 (2009), 271–276 | DOI | MR | Zbl

[33] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[34] C. Hohlweg, C. E. M. C. Lange, “Realizations of the associahedron and cyclohedron”, Discrete Comput. Geom., 37:4 (2007), 517–543 | DOI | MR | Zbl

[35] J.-L. Loday, “Realization of the Stasheff polytope”, Arch. Math. (Basel), 83:3 (2004), 267–278 | DOI | MR | Zbl

[36] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995 | MR | Zbl

[37] A. Zelevinsky, “Nested complexes and their polyhedral realizations”, Pure Appl. Math. Q., 2:3 (2006), 655–671 | MR | Zbl

[38] W. B. R. Lickorish, “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, USA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320 | DOI | MR | Zbl

[39] E. M. Feichtner, I. Müller, “On the topology of nested set complexes”, Proc. Amer. Math. Soc., 133:4 (2005), 999–1006 | DOI | MR | Zbl

[40] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004 | MR | Zbl

[41] G. Blind, R. Blind, “Convex polytopes without triangular faces”, Israel J. Math., 71:2 (1990), 129–134 | DOI | MR | Zbl

[42] G. Blind, R. Blind, “Triangle-free polytopes with few facets”, Arch. Math. (Basel), 58:6 (1992), 599–605 | DOI | MR | Zbl