Sharp upper and lower bounds for nestohedra
Izvestiya. Mathematics, Tome 75 (2011) no. 6, pp. 1107-1133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain sharp upper and lower bounds for the coefficients of the enumerative polynomials of all flag nestohedra as well as for certain important subclasses including graph-associahedra. Proofs are based on an original construction of sequences of polytopes.
Keywords: convex polytope, face vector, flag nestohedron
Mots-clés : graph-associahedron, Gal's conjecture.
@article{IM2_2011_75_6_a1,
     author = {V. M. Buchstaber and V. D. Volodin},
     title = {Sharp upper and lower bounds for nestohedra},
     journal = {Izvestiya. Mathematics},
     pages = {1107--1133},
     year = {2011},
     volume = {75},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - V. D. Volodin
TI  - Sharp upper and lower bounds for nestohedra
JO  - Izvestiya. Mathematics
PY  - 2011
SP  - 1107
EP  - 1133
VL  - 75
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/
LA  - en
ID  - IM2_2011_75_6_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A V. D. Volodin
%T Sharp upper and lower bounds for nestohedra
%J Izvestiya. Mathematics
%D 2011
%P 1107-1133
%V 75
%N 6
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/
%G en
%F IM2_2011_75_6_a1
V. M. Buchstaber; V. D. Volodin. Sharp upper and lower bounds for nestohedra. Izvestiya. Mathematics, Tome 75 (2011) no. 6, pp. 1107-1133. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a1/

[1] V. M. Buchstaber, N. Ray, “An invitation to toric topology: vertex four of a remarkable tetrahedron”, Toric topology (Osaka, Japan, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 1–27 | MR | Zbl

[2] V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[3] D. W. Barnette, “The minimum number of vertices of a simple polytope”, Israel J. Math., 10:1 (1971), 121–125 | DOI | MR | Zbl

[4] D. Barnette, “A proof of the lower bound conjecture for convex polytopes”, Pacific J. Math., 46:2 (1973), 349–354 | MR | Zbl

[5] P. McMullen, “The maximum numbers of faces of a convex polytope”, Mathematika, 17:2 (1970), 179–184 | DOI | MR | Zbl

[6] L. J. Billera, C. W. Lee, “A proof of the sufficiency of McMullen's conditions for $f$-vectors of simplicial convex polytopes”, J. Combin. Theory Ser. A, 31:3 (1981), 237–255 | DOI | MR | Zbl

[7] R. P. Stanley, “The number of faces of a simplicial convex polytope”, Adv. in Math., 35:3 (1980), 236–238 | DOI | MR | Zbl

[8] P. McMullen, “The numbers of faces of simplicial polytopes”, Israel J. Math., 9:4 (1971), 559–570 | DOI | MR | Zbl

[9] P. McMullen, “On simple polytopes”, Invent. Math., 113:1 (1993), 419–444 | DOI | MR | Zbl

[10] P. McMullen, “Weights on polytopes”, Discrete Comput. Geom., 15:4 (1996), 363–388 | DOI | MR | Zbl

[11] V. A. Timorin, “An analogue of the Hodge–Riemann relations for simple convex polytopes”, Russian Math. Surveys, 54:2 (1999), 381–426 | DOI | MR | Zbl

[12] G. M. Ziegler, “Face numbers of 4-polytopes and 3-spheres”, Proceedings of the international congress of mathematicians. III (Beijing, China, 2002), Invited lectures, Higher Education Press, Beijing, 2002, 625–634 | MR | Zbl

[13] E. M. Feichtner, B. Sturmfels, “Matroid polytopes, nested sets and Bergman fans”, Port. Math. (N.S.), 62:4 (2005), 437–468 | MR | Zbl

[14] A. Postnikov, “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not. IMRN, 2009, no. 6, 1026–1106 | DOI | MR | Zbl

[15] A. Postnikov, V. Reiner, L. Williams, “Faces of generalized permutohedra”, Doc. Math., 13 (2008), 207–273 | MR | Zbl

[16] C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494 | DOI | MR | Zbl

[17] W. Fulton, R. MacPherson, “A compactification of configuration spaces”, Ann. of Math. (2), 139:1 (1994), 183–225 | DOI | MR | Zbl

[18] E. M. Feichtner, D. Kozlov, “Incidence combinatorics of resolutions”, Selecta Math. (N.S.), 10:1 (2004), 37–60 | DOI | MR | Zbl

[19] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[20] T. Delzant, “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116:3 (1988), 315–339 | MR | Zbl

[21] A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Math., 1764, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[22] M. Carr, S. L. Devadoss, “Coxeter complexes and graph-associahedra”, Topology Appl., 153:12 (2006), 2155–2168 | DOI | MR | Zbl

[23] M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, Math. Surveys Monogr., 96, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[24] R. Charney, M. Davis, “The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold”, Pacific J. Math., 171:1 (1995), 117–137 | MR | Zbl

[25] S. R. Gal, “Real root conjecture fails for five- and higher-dimensional spheres”, Discrete Comput. Geom., 34:2 (2005), 269–284 | DOI | MR | Zbl

[26] N. Yu. Erokhovets, “Gal's conjecture for nestohedra corresponding to complete bipartite graphs”, Proc. Steklov Inst. Math., 266 (2009), 120–132 | DOI | MR | Zbl

[27] A. G. Fenn, Generating functions of nestohedra and applications, arXiv: 0908.0605

[28] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263 (2008), 13–37 | DOI | MR | Zbl

[29] V. M. Buchstaber, “Lectures on toric topology”, Trends in Mathematics, 11:1 (2008), 1–55

[30] F. Chapoton, S. Fomin, A. Zelevinsky, “Polytopal realizations of generalized associahedra”, Canad. Math. Bull., 45:4 (2002), 537–566 | DOI | MR | Zbl

[31] C. Ceballos, G. M. Ziegler, Three non-equivalent realizations of the associahedron, arXiv: 1006.3487v1

[32] S. L. Devadoss, “A realization of graph associahedra”, Discrete Math., 309:1 (2009), 271–276 | DOI | MR | Zbl

[33] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[34] C. Hohlweg, C. E. M. C. Lange, “Realizations of the associahedron and cyclohedron”, Discrete Comput. Geom., 37:4 (2007), 517–543 | DOI | MR | Zbl

[35] J.-L. Loday, “Realization of the Stasheff polytope”, Arch. Math. (Basel), 83:3 (2004), 267–278 | DOI | MR | Zbl

[36] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995 | MR | Zbl

[37] A. Zelevinsky, “Nested complexes and their polyhedral realizations”, Pure Appl. Math. Q., 2:3 (2006), 655–671 | MR | Zbl

[38] W. B. R. Lickorish, “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, USA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320 | DOI | MR | Zbl

[39] E. M. Feichtner, I. Müller, “On the topology of nested set complexes”, Proc. Amer. Math. Soc., 133:4 (2005), 999–1006 | DOI | MR | Zbl

[40] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004 | MR | Zbl

[41] G. Blind, R. Blind, “Convex polytopes without triangular faces”, Israel J. Math., 71:2 (1990), 129–134 | DOI | MR | Zbl

[42] G. Blind, R. Blind, “Triangle-free polytopes with few facets”, Arch. Math. (Basel), 58:6 (1992), 599–605 | DOI | MR | Zbl