Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_6_a0, author = {E. Bannai and Ts. Miezaki and V. A. Yudin}, title = {An elementary approach to toy models for {D.~H.~Lehmer's} conjecture}, journal = {Izvestiya. Mathematics }, pages = {1093--1106}, publisher = {mathdoc}, volume = {75}, number = {6}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a0/} }
TY - JOUR AU - E. Bannai AU - Ts. Miezaki AU - V. A. Yudin TI - An elementary approach to toy models for D.~H.~Lehmer's conjecture JO - Izvestiya. Mathematics PY - 2011 SP - 1093 EP - 1106 VL - 75 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a0/ LA - en ID - IM2_2011_75_6_a0 ER -
E. Bannai; Ts. Miezaki; V. A. Yudin. An elementary approach to toy models for D.~H.~Lehmer's conjecture. Izvestiya. Mathematics , Tome 75 (2011) no. 6, pp. 1093-1106. http://geodesic.mathdoc.fr/item/IM2_2011_75_6_a0/
[1] E. Bannai, T. Miezaki, “Toy models for D. H. Lehmer's conjecture”, J. Math. Soc. Japan, 62:3 (2010), 687–705 | DOI | MR | Zbl
[2] P. de la Harpe, C. Pache, “Cubature formulas, geometrical designs, reproducing kernels, and Markov operators”, Infinite groups: geometric, combinatorial and dynamical aspects (Gaeta, Italy, 2003), Progr. Math., 248, Birkhäuser, Basel, 2005, 219–267 | MR | Zbl
[3] P. de la Harpe, C. Pache, B. Venkov, “Construction of spherical cubature formulas using lattices”, St. Petersburg Math. J., 18:1 (2007), 119–139 | DOI | MR | Zbl
[4] C. Pache, “Shells of selfdual lattices viewed as spherical designs”, Internat. J. Algebra Comput., 5:5–6 (2005), 1085–1127 | DOI | MR | Zbl
[5] B. B. Venkov, “On even unimodular extremal lattices”, Proc. Steklov Inst. Math., 165 (1985), 47–52 | MR | Zbl | Zbl
[6] E. Bannai, T. Miezaki, Toy models for D. H. Lehmer's conjecture. II, arXiv: 1004.1520
[7] J. S. Calcut, “Gaussian integers and arctangent identities for $\pi$”, Amer. Math. Monthly, 116:6 (2009), 515–530 | DOI | MR
[8] P. Delsarte, J. M. Goethals, J. J. Seidel, “Spherical codes and designs”, Geometriae Dedicata, 6:3 (1977), 363–388 | DOI | MR | Zbl
[9] D. B. Zagier, Zetafunktionen und quadratische Körper. Eine Einfuhrüng in die höhere Zahlentheorie, Springer-Verlag, Berlin–New York, 1981 | MR | Zbl
[10] D. A. Cox, Primes of the form $x^2+ny^2$. Fermat, class field theory and complex multiplication, Wiley-Intersci. Publ., Wiley, New York, 1989 | MR | Zbl