Van der Waerden's function and colourings of hypergraphs
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1063-1091
Voir la notice de l'article provenant de la source Math-Net.Ru
A classical problem of combinatorial number theory is to compute
van der Waerden's function $W(n,r)$. Using random colourings
of hypergraphs, we get a new asymptotic lower bound for $W(n,r)$ which
improves previous results for a wide range of values of $n$ and $r$.
Keywords:
van der Waerden's theorem, arithmetic progressions, hypergraph,
chromatic number.
@article{IM2_2011_75_5_a8,
author = {D. A. Shabanov},
title = {Van der {Waerden's} function and colourings of hypergraphs},
journal = {Izvestiya. Mathematics },
pages = {1063--1091},
publisher = {mathdoc},
volume = {75},
number = {5},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/}
}
D. A. Shabanov. Van der Waerden's function and colourings of hypergraphs. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1063-1091. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/