Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_5_a8, author = {D. A. Shabanov}, title = {Van der {Waerden's} function and colourings of hypergraphs}, journal = {Izvestiya. Mathematics }, pages = {1063--1091}, publisher = {mathdoc}, volume = {75}, number = {5}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/} }
D. A. Shabanov. Van der Waerden's function and colourings of hypergraphs. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1063-1091. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/
[1] B. L. van der Waerden, “Beweis einer Baudetschen Vermutung”, Nieuw Archief voor Wiskunde, 15 (1927), 212–216 | Zbl
[2] R. L. Graham, Rudiments of Ramsey theory, CBMS Regional Conf. Ser. in Math., 45, Amer. Math. Soc., Providence, RI, 1981 | MR | MR | Zbl | Zbl
[3] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1990 | MR | Zbl
[4] I. D. Shkredov, “Szemeredi's theorem and problems on arithmetic progressions”, Russian Math. Surveys, 61:6 (2006), 1101–1166 | DOI | MR | Zbl
[5] S. Shelah, “Primitive recursive bounds for van der Waerden numbers”, J. Amer. Math. Soc., 1:3 (1988), 683–697 | DOI | MR | Zbl
[6] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl
[7] R. Graham, J. Solymosi, “Monochromatic equilateral right triangles on the integer grid”, Topics in discrete mathematics, Algorithms Combin., 26, Springer-Verlag, Berlin, 2006, 129–132 | DOI | MR | Zbl
[8] P. Erdős, R. Radó, “Combinatorial theorems on classifications of subsets of a given set”, Proc. London Math. Soc. (3), 2 (1952), 417–439 | DOI | MR | Zbl
[9] L. Moser, “Notes on number theory. II. On a theorem of van der Waerden”, Canad. Math. Bull., 3 (1960), 23–25 | DOI | MR | Zbl
[10] W. M. Schmidt, “Two combinatorial theorems on arithmetic progressions”, Duke Math. J., 29:1 (1962), 129–140 | DOI | MR | Zbl
[11] E. R. Berlekamp, “A construction for partitions which avoid long arithmetic progressions”, Canad. Math. Bull., 11 (1968), 409–414 | DOI | MR | Zbl
[12] P. Erdős, L. Lovász, “Problems and results on $3$-chromatic hypergraphs and some related questions”, Infinite and finite sets (Keszthely, 1973), North Holland, Amsterdam, 1973, 609–627 | MR | Zbl
[13] Z. Szabó, “An application of Lovasz' local lemma – a new lower bound for the van der Waerden number”, Random Structures Algorithms, 1:3 (1990), 343–360 | DOI | MR | Zbl
[14] J. Radhakrishnan, A. Srinivasan, “Improved bounds and algorithms for hypergraph 2-coloring”, Random Structures Algorithms, 16:1 (2000), 4–32 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] D. A. Shabanov, “On the chromatic number of finite systems of subsets”, Math. Notes, 85:5–6 (2009), 902–905 | DOI | MR | Zbl
[16] N. Alon, J. H. Spencer, The probabilistic method, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 2000 | MR | Zbl