Van der Waerden's function and colourings of hypergraphs
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1063-1091

Voir la notice de l'article provenant de la source Math-Net.Ru

A classical problem of combinatorial number theory is to compute van der Waerden's function $W(n,r)$. Using random colourings of hypergraphs, we get a new asymptotic lower bound for $W(n,r)$ which improves previous results for a wide range of values of $n$ and $r$.
Keywords: van der Waerden's theorem, arithmetic progressions, hypergraph, chromatic number.
@article{IM2_2011_75_5_a8,
     author = {D. A. Shabanov},
     title = {Van der {Waerden's} function and colourings of hypergraphs},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1091},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/}
}
TY  - JOUR
AU  - D. A. Shabanov
TI  - Van der Waerden's function and colourings of hypergraphs
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1063
EP  - 1091
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/
LA  - en
ID  - IM2_2011_75_5_a8
ER  - 
%0 Journal Article
%A D. A. Shabanov
%T Van der Waerden's function and colourings of hypergraphs
%J Izvestiya. Mathematics 
%D 2011
%P 1063-1091
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/
%G en
%F IM2_2011_75_5_a8
D. A. Shabanov. Van der Waerden's function and colourings of hypergraphs. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1063-1091. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a8/