Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_5_a6, author = {D. A. Popov}, title = {On the second term in the {Weyl} formula for the spectrum of the {Laplace} operator on the two-dimensional torus and the number of integer points in spectral domains}, journal = {Izvestiya. Mathematics }, pages = {1007--1045}, publisher = {mathdoc}, volume = {75}, number = {5}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/} }
TY - JOUR AU - D. A. Popov TI - On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains JO - Izvestiya. Mathematics PY - 2011 SP - 1007 EP - 1045 VL - 75 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/ LA - en ID - IM2_2011_75_5_a6 ER -
%0 Journal Article %A D. A. Popov %T On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains %J Izvestiya. Mathematics %D 2011 %P 1007-1045 %V 75 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/ %G en %F IM2_2011_75_5_a6
D. A. Popov. On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1007-1045. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/
[1] M. M. Postnikov, Geometry VI. Riemannian geometry, Encyclopaedia Math. Sci., 91, Springer-Verlag, Berlin, 2001 | MR | MR | Zbl
[2] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl
[3] G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations. VII, Encyclopaedia Math. Sci., 64, Springer-Verlag, Berlin, 1994, 1–261 | MR | MR | Zbl | Zbl
[4] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl
[5] L. Hörmander, “The spectral function of an elliptic operator”, Acta. Math., 121:1 (1968), 193–218 | DOI | MR | Zbl
[6] J. Chazarain, “Formule de Poisson pour les variétés riemanniennes”, Invent. Math., 24:1 (1974), 65–82 | DOI | MR | Zbl
[7] J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79 | DOI | MR | Zbl
[8] L. Hörmander, The analysis of linear partial differential operators, v. 4, Grundlehren Math. Wiss., 275, Fourier integral operators, Springer-Verlag, Berlin, 1985 | MR | MR | Zbl
[9] A. V. Volovoi, “Improved two-term asymptotics of the distribution function of the eigenvalues of an elliptic operator on a compact manifold”, Soviet Math. Dokl., 35:3 (1987), 604–607 | MR | Zbl
[10] A. V. Volovoy, “Verification of the Hamilton flow conditions associated with Weyl's conjecture”, Ann. Global Anal. Geom., 8:2 (1990), 127–136 | DOI | MR | Zbl
[11] A. V. Volovoy, “Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold”, Comm. Partial Differential Equations, 15:11 (1990), 1509–1563 | DOI | MR | Zbl
[12] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl
[13] Y. Colin de Verdièr, “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable”, Math. Z., 171:1 (1980), 51–73 | DOI | MR | Zbl
[14] E. Krätzel, Lattice points, Math. Appl. (East European Ser.), 33, Kluwer Acad. Publ., Dordrecht, 1988 | MR | Zbl
[15] M. N. Huxley, “Exponential sums and lattice points. III”, Proc. London Math. Soc. (3), 87:3 (2003), 591–609 | DOI | MR | Zbl
[16] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, “Statistical properties of the spectra of Laplace–Beltrami operators on Liouville surfaces”, Russian Math. Surveys, 48:4 (1993), 1–142 | DOI | MR | Zbl
[17] P. H. Bérard, “On the wave equation on a compact Riemannian manifold without conjugate points”, Math. Z., 155:3 (1977), 249–276 | DOI | MR | Zbl
[18] H. P. McKean, “Selberg's trace formula as applied to a compact Riemann surface”, Comm. Pure Appl. Math., 25:3 (1972), 225–246 | DOI | MR
[19] D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:2 (1976), 441–482 | DOI | MR | Zbl
[20] A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics”, Russian Math. Surveys, 34:3 (1979), 79–153 | DOI | MR | Zbl | Zbl
[21] D. A. Hejhal, The Selberg trace formula for $\mathrm{PSL}(2,\mathbb R)$, v. 1, Lect. Notes. in Math., 548, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl
[22] D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one”, Izv. Math., 73:3 (2009), 579–610 | DOI | MR | Zbl
[23] W. G. Nowak, “Zur Gitterpunktlehre der euklidischen Ebene”, Nederl. Akad. Wetensch. Indag. Math., 46:2 (1984), 209–223 | MR | Zbl
[24] W. Müller, W. G. Nowak, “On lattice points in planar domains”, Math. J. Okayama Univ., 27 (1985), 173–184 | MR | Zbl
[25] W. Müller, W. G. Nowak, “Lattice points in planar domains: Applications of Huxley's “discrete Hardy–Littlewood method””, Number-theoretic analysis (Vienna, 1988–1989), Lecture Notes in Math., 1452, Springer-Verlag, Berlin, 1990, 139–164 | DOI | MR | Zbl
[26] L. Hörmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[27] Y. Colin de Verdièr, “Nombre de points entiers dans une famille homothétique de domains de $\mathbb R^4$”, Ann. Sci. École Norm. Sup. (4), 10:4 (1977), 559–575 | MR | Zbl
[28] V. F. Kagan, Osnovy teorii poverkhnostei v tenzornom izlozhenii, v. 2, Gostekhizdat, L., 1948 | MR | Zbl
[29] F. W. J. Olver, “Second-order linear differential equations with two turning points”, Philos. Trans. Roy. Soc. London Ser. A, 1975, no. 278, 137–174 | DOI | MR | Zbl
[30] A. Ya. Khinchin, Continued fractions, The University of Chicago Press, Chicago–London, 1964 | MR | MR | Zbl | Zbl
[31] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl
[32] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl
[33] D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Russian Math. Surveys, 52:1 (1997), 73–145 | DOI | MR | Zbl
[34] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Multiple trigonometric sums”, Proc. Steklov Inst. Math., 151:2 (1982), 1–126 | MR | Zbl | Zbl