On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1007-1045.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct Liouville metrics on the two-dimensional torus for which the asymptotic behaviour of the second term in the Weyl formula is evaluated explicitly. We prove the instability of the second term in this formula with respect to small deformations (in the $C^1$ metric) of a Liouville metric, and establish the absence of power reduction in the Hörmander estimate on the class of closed manifolds with smooth metric in the case of integrable geodesic flow and the zero measure of the set of closed geodesics in the subspace of unit spheres of the cotangent bundle.
Keywords: Laplace operator, spectrum, Weyl formula, integer points, geodesic flow.
@article{IM2_2011_75_5_a6,
     author = {D. A. Popov},
     title = {On the second term in the {Weyl} formula for the spectrum of the {Laplace} operator on the two-dimensional torus and the number of integer points in spectral domains},
     journal = {Izvestiya. Mathematics },
     pages = {1007--1045},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1007
EP  - 1045
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/
LA  - en
ID  - IM2_2011_75_5_a6
ER  - 
%0 Journal Article
%A D. A. Popov
%T On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
%J Izvestiya. Mathematics 
%D 2011
%P 1007-1045
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/
%G en
%F IM2_2011_75_5_a6
D. A. Popov. On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1007-1045. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/

[1] M. M. Postnikov, Geometry VI. Riemannian geometry, Encyclopaedia Math. Sci., 91, Springer-Verlag, Berlin, 2001 | MR | MR | Zbl

[2] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[3] G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations. VII, Encyclopaedia Math. Sci., 64, Springer-Verlag, Berlin, 1994, 1–261 | MR | MR | Zbl | Zbl

[4] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl

[5] L. Hörmander, “The spectral function of an elliptic operator”, Acta. Math., 121:1 (1968), 193–218 | DOI | MR | Zbl

[6] J. Chazarain, “Formule de Poisson pour les variétés riemanniennes”, Invent. Math., 24:1 (1974), 65–82 | DOI | MR | Zbl

[7] J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79 | DOI | MR | Zbl

[8] L. Hörmander, The analysis of linear partial differential operators, v. 4, Grundlehren Math. Wiss., 275, Fourier integral operators, Springer-Verlag, Berlin, 1985 | MR | MR | Zbl

[9] A. V. Volovoi, “Improved two-term asymptotics of the distribution function of the eigenvalues of an elliptic operator on a compact manifold”, Soviet Math. Dokl., 35:3 (1987), 604–607 | MR | Zbl

[10] A. V. Volovoy, “Verification of the Hamilton flow conditions associated with Weyl's conjecture”, Ann. Global Anal. Geom., 8:2 (1990), 127–136 | DOI | MR | Zbl

[11] A. V. Volovoy, “Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold”, Comm. Partial Differential Equations, 15:11 (1990), 1509–1563 | DOI | MR | Zbl

[12] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl

[13] Y. Colin de Verdièr, “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable”, Math. Z., 171:1 (1980), 51–73 | DOI | MR | Zbl

[14] E. Krätzel, Lattice points, Math. Appl. (East European Ser.), 33, Kluwer Acad. Publ., Dordrecht, 1988 | MR | Zbl

[15] M. N. Huxley, “Exponential sums and lattice points. III”, Proc. London Math. Soc. (3), 87:3 (2003), 591–609 | DOI | MR | Zbl

[16] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, “Statistical properties of the spectra of Laplace–Beltrami operators on Liouville surfaces”, Russian Math. Surveys, 48:4 (1993), 1–142 | DOI | MR | Zbl

[17] P. H. Bérard, “On the wave equation on a compact Riemannian manifold without conjugate points”, Math. Z., 155:3 (1977), 249–276 | DOI | MR | Zbl

[18] H. P. McKean, “Selberg's trace formula as applied to a compact Riemann surface”, Comm. Pure Appl. Math., 25:3 (1972), 225–246 | DOI | MR

[19] D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function”, Duke Math. J., 43:2 (1976), 441–482 | DOI | MR | Zbl

[20] A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics”, Russian Math. Surveys, 34:3 (1979), 79–153 | DOI | MR | Zbl | Zbl

[21] D. A. Hejhal, The Selberg trace formula for $\mathrm{PSL}(2,\mathbb R)$, v. 1, Lect. Notes. in Math., 548, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl

[22] D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one”, Izv. Math., 73:3 (2009), 579–610 | DOI | MR | Zbl

[23] W. G. Nowak, “Zur Gitterpunktlehre der euklidischen Ebene”, Nederl. Akad. Wetensch. Indag. Math., 46:2 (1984), 209–223 | MR | Zbl

[24] W. Müller, W. G. Nowak, “On lattice points in planar domains”, Math. J. Okayama Univ., 27 (1985), 173–184 | MR | Zbl

[25] W. Müller, W. G. Nowak, “Lattice points in planar domains: Applications of Huxley's “discrete Hardy–Littlewood method””, Number-theoretic analysis (Vienna, 1988–1989), Lecture Notes in Math., 1452, Springer-Verlag, Berlin, 1990, 139–164 | DOI | MR | Zbl

[26] L. Hörmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[27] Y. Colin de Verdièr, “Nombre de points entiers dans une famille homothétique de domains de $\mathbb R^4$”, Ann. Sci. École Norm. Sup. (4), 10:4 (1977), 559–575 | MR | Zbl

[28] V. F. Kagan, Osnovy teorii poverkhnostei v tenzornom izlozhenii, v. 2, Gostekhizdat, L., 1948 | MR | Zbl

[29] F. W. J. Olver, “Second-order linear differential equations with two turning points”, Philos. Trans. Roy. Soc. London Ser. A, 1975, no. 278, 137–174 | DOI | MR | Zbl

[30] A. Ya. Khinchin, Continued fractions, The University of Chicago Press, Chicago–London, 1964 | MR | MR | Zbl | Zbl

[31] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl

[32] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl

[33] D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Russian Math. Surveys, 52:1 (1997), 73–145 | DOI | MR | Zbl

[34] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Multiple trigonometric sums”, Proc. Steklov Inst. Math., 151:2 (1982), 1–126 | MR | Zbl | Zbl