On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1007-1045

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct Liouville metrics on the two-dimensional torus for which the asymptotic behaviour of the second term in the Weyl formula is evaluated explicitly. We prove the instability of the second term in this formula with respect to small deformations (in the $C^1$ metric) of a Liouville metric, and establish the absence of power reduction in the Hörmander estimate on the class of closed manifolds with smooth metric in the case of integrable geodesic flow and the zero measure of the set of closed geodesics in the subspace of unit spheres of the cotangent bundle.
Keywords: Laplace operator, spectrum, Weyl formula, integer points, geodesic flow.
@article{IM2_2011_75_5_a6,
     author = {D. A. Popov},
     title = {On the second term in the {Weyl} formula for the spectrum of the {Laplace} operator on the two-dimensional torus and the number of integer points in spectral domains},
     journal = {Izvestiya. Mathematics },
     pages = {1007--1045},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 1007
EP  - 1045
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/
LA  - en
ID  - IM2_2011_75_5_a6
ER  - 
%0 Journal Article
%A D. A. Popov
%T On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
%J Izvestiya. Mathematics 
%D 2011
%P 1007-1045
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/
%G en
%F IM2_2011_75_5_a6
D. A. Popov. On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 1007-1045. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a6/