The transition constant for arithmetic hyperbolic reflection groups
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 971-1005.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the results and methods of our papers [1], [2], we show that the degree of the ground field of an arithmetic hyperbolic reflection group does not exceed 25 in dimensions $n\geqslant 6$, and 44 in dimensions 3, 4, 5. This significantly improves our estimates obtained in [2]–[4]. We also use recent results in [5] and [6] to reduce the last bound to 35. We also review and correct the results of [1], § 1.
Keywords: group generated by reflections, arithmetic group, hyperbolic space, number field, field of definition, quadratic form.
@article{IM2_2011_75_5_a5,
     author = {V. V. Nikulin},
     title = {The transition constant for arithmetic hyperbolic reflection groups},
     journal = {Izvestiya. Mathematics },
     pages = {971--1005},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - The transition constant for arithmetic hyperbolic reflection groups
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 971
EP  - 1005
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/
LA  - en
ID  - IM2_2011_75_5_a5
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T The transition constant for arithmetic hyperbolic reflection groups
%J Izvestiya. Mathematics 
%D 2011
%P 971-1005
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/
%G en
%F IM2_2011_75_5_a5
V. V. Nikulin. The transition constant for arithmetic hyperbolic reflection groups. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 971-1005. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/

[1] V. V. Nikulin, “On the classification of arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 18:1 (1982), 99–123 | DOI | MR | Zbl

[2] V. V. Nikulin, “On ground fields of arithmetic hyperbolic reflection groups”, Groups and symmetries (Montreal, Canada, 2007), CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 299–326 | MR | Zbl

[3] V. V. Nikulin, “On ground fields of arithmetic hyperbolic reflection groups. II”, Mosc. Math. J., 8:4 (2008), 789–812 | MR | Zbl

[4] V. V. Nikulin, “On ground fields of arithmetic hyperbolic reflection groups. III”, J. Lond. Math. Soc. (2), 79:3 (2009), 738–756 | DOI | MR | Zbl

[5] M. Belolipetsky, “On fields of definition of arithmetic Kleinian reflection groups”, Proc. Amer. Math. Soc., 137:3 (2009), 1035–1038 | DOI | MR | Zbl

[6] C. Maclachlan, “Bounds for discrete hyperbolic arithmetic reflection groups in dimension 2”, Bull. Lond. Math. Soc., 43:1 (2011), 111–123 | DOI | MR | Zbl

[7] V. V. Nikulin, “Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces”, Izv. Math., 71:1 (2007), 53–56 | DOI | MR | Zbl

[8] I. Agol, “Finiteness of arithmetic Kleinian reflection groups”, Proceedings of the international congress of mathematicians (Madrid, Spain, 2006), v. II, Eur. Math. Soc., Zürich, 2006, 951–960 | MR | Zbl

[9] V. V. Nikulin, The transition constant for arithmetic hyperbolic reflection groups, arXiv: 0910.5217

[10] E. B. Vinberg, “Discrete groups generated by reflections in Lobačevskiǐ spaces”, Math. USSR-Sb., 1:3 (1967), 429–444 | DOI | MR | Zbl

[11] E. B. Vinberg, “Hyperbolic reflection groups”, Russian Math. Surveys, 40:1 (1985), 31–75 | DOI | MR | Zbl

[12] V. V. Nikulin, “On arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 16:3 (1981), 573–601 | DOI | MR | Zbl | Zbl

[13] F. Lannér, “On complexes with transitive groups of automorphisms”, Comm. Sém., Math. Univ. Lund, 11 (1950), 1–71 | MR | Zbl

[14] E. B. Vinberg, “The non-existence of crystallographic groups of reflections in Lobachevskij spaces of large dimension”, Trans. Mosc. Math. Soc., 1985, 75–112 | MR | Zbl

[15] K. Takeuchi, “Arithmetic triangle groups”, J. Math. Soc. Japan, 29:1 (1977), 91–106 | DOI | MR | Zbl

[16] K. Takeuchi, “Commensurability classes of arithmetic triangle groups”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24:1 (1977), 201–212 | MR | Zbl

[17] V. V. Nikulin, “Discrete reflection groups in Lobachevsky spaces and algebraic surfaces”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 654–671 | MR | Zbl

[18] V. V. Nikulin, The remark on arithmetic groups generated by reflections in Lobachevsky spaces, Preprint MPI/91 Max-Planck-Institut für Mathematik, Bonn, 1991

[19] K. Takeuchi, “A characterization of arithmetic Fuchsian groups”, J. Math. Soc. Japan, 27:4 (1975), 600–612 | DOI | MR | Zbl

[20] K. Takeuchi, “Arithmetic Fuchsian groups with signature $(1,e)$”, J. Math. Soc. Japan, 35:3 (1983), 381–407 | DOI | MR | Zbl

[21] D. D. Long, C. Maclachlan, A. W. Reid, “Arithmetic Fuchsian groups of genus zero”, Pure Appl. Math. Q., 2:2 (2006), 569–599 | MR | Zbl

[22] M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 17:1 (1923), 228–249 | DOI | MR | Zbl

[23] A. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl

[24] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Univ. Press, New York, 1957 | MR | MR | Zbl | Zbl