The transition constant for arithmetic hyperbolic reflection groups
Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 971-1005

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the results and methods of our papers [1], [2], we show that the degree of the ground field of an arithmetic hyperbolic reflection group does not exceed 25 in dimensions $n\geqslant 6$, and 44 in dimensions 3, 4, 5. This significantly improves our estimates obtained in [2]–[4]. We also use recent results in [5] and [6] to reduce the last bound to 35. We also review and correct the results of [1], § 1.
Keywords: group generated by reflections, arithmetic group, hyperbolic space, number field, field of definition, quadratic form.
@article{IM2_2011_75_5_a5,
     author = {V. V. Nikulin},
     title = {The transition constant for arithmetic hyperbolic reflection groups},
     journal = {Izvestiya. Mathematics },
     pages = {971--1005},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - The transition constant for arithmetic hyperbolic reflection groups
JO  - Izvestiya. Mathematics 
PY  - 2011
SP  - 971
EP  - 1005
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/
LA  - en
ID  - IM2_2011_75_5_a5
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T The transition constant for arithmetic hyperbolic reflection groups
%J Izvestiya. Mathematics 
%D 2011
%P 971-1005
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/
%G en
%F IM2_2011_75_5_a5
V. V. Nikulin. The transition constant for arithmetic hyperbolic reflection groups. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 971-1005. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/