Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2011_75_5_a5, author = {V. V. Nikulin}, title = {The transition constant for arithmetic hyperbolic reflection groups}, journal = {Izvestiya. Mathematics }, pages = {971--1005}, publisher = {mathdoc}, volume = {75}, number = {5}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/} }
V. V. Nikulin. The transition constant for arithmetic hyperbolic reflection groups. Izvestiya. Mathematics , Tome 75 (2011) no. 5, pp. 971-1005. http://geodesic.mathdoc.fr/item/IM2_2011_75_5_a5/
[1] V. V. Nikulin, “On the classification of arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 18:1 (1982), 99–123 | DOI | MR | Zbl
[2] V. V. Nikulin, “On ground fields of arithmetic hyperbolic reflection groups”, Groups and symmetries (Montreal, Canada, 2007), CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 299–326 | MR | Zbl
[3] V. V. Nikulin, “On ground fields of arithmetic hyperbolic reflection groups. II”, Mosc. Math. J., 8:4 (2008), 789–812 | MR | Zbl
[4] V. V. Nikulin, “On ground fields of arithmetic hyperbolic reflection groups. III”, J. Lond. Math. Soc. (2), 79:3 (2009), 738–756 | DOI | MR | Zbl
[5] M. Belolipetsky, “On fields of definition of arithmetic Kleinian reflection groups”, Proc. Amer. Math. Soc., 137:3 (2009), 1035–1038 | DOI | MR | Zbl
[6] C. Maclachlan, “Bounds for discrete hyperbolic arithmetic reflection groups in dimension 2”, Bull. Lond. Math. Soc., 43:1 (2011), 111–123 | DOI | MR | Zbl
[7] V. V. Nikulin, “Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces”, Izv. Math., 71:1 (2007), 53–56 | DOI | MR | Zbl
[8] I. Agol, “Finiteness of arithmetic Kleinian reflection groups”, Proceedings of the international congress of mathematicians (Madrid, Spain, 2006), v. II, Eur. Math. Soc., Zürich, 2006, 951–960 | MR | Zbl
[9] V. V. Nikulin, The transition constant for arithmetic hyperbolic reflection groups, arXiv: 0910.5217
[10] E. B. Vinberg, “Discrete groups generated by reflections in Lobačevskiǐ spaces”, Math. USSR-Sb., 1:3 (1967), 429–444 | DOI | MR | Zbl
[11] E. B. Vinberg, “Hyperbolic reflection groups”, Russian Math. Surveys, 40:1 (1985), 31–75 | DOI | MR | Zbl
[12] V. V. Nikulin, “On arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 16:3 (1981), 573–601 | DOI | MR | Zbl | Zbl
[13] F. Lannér, “On complexes with transitive groups of automorphisms”, Comm. Sém., Math. Univ. Lund, 11 (1950), 1–71 | MR | Zbl
[14] E. B. Vinberg, “The non-existence of crystallographic groups of reflections in Lobachevskij spaces of large dimension”, Trans. Mosc. Math. Soc., 1985, 75–112 | MR | Zbl
[15] K. Takeuchi, “Arithmetic triangle groups”, J. Math. Soc. Japan, 29:1 (1977), 91–106 | DOI | MR | Zbl
[16] K. Takeuchi, “Commensurability classes of arithmetic triangle groups”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24:1 (1977), 201–212 | MR | Zbl
[17] V. V. Nikulin, “Discrete reflection groups in Lobachevsky spaces and algebraic surfaces”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 654–671 | MR | Zbl
[18] V. V. Nikulin, The remark on arithmetic groups generated by reflections in Lobachevsky spaces, Preprint MPI/91 Max-Planck-Institut für Mathematik, Bonn, 1991
[19] K. Takeuchi, “A characterization of arithmetic Fuchsian groups”, J. Math. Soc. Japan, 27:4 (1975), 600–612 | DOI | MR | Zbl
[20] K. Takeuchi, “Arithmetic Fuchsian groups with signature $(1,e)$”, J. Math. Soc. Japan, 35:3 (1983), 381–407 | DOI | MR | Zbl
[21] D. D. Long, C. Maclachlan, A. W. Reid, “Arithmetic Fuchsian groups of genus zero”, Pure Appl. Math. Q., 2:2 (2006), 569–599 | MR | Zbl
[22] M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 17:1 (1923), 228–249 | DOI | MR | Zbl
[23] A. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York–London, 1966 | MR | MR | Zbl | Zbl
[24] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Univ. Press, New York, 1957 | MR | MR | Zbl | Zbl